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Figure 1: With Promptiverse, lecture designers can create a large number of diverse scaffolding prompts by extracting rich
knowledge graphs from a video script. These knowledge graphs can be efficiently extracted with the help of Grannotate,
a human-AI hybrid graph annotation tool. Promptiverse generates scaffolding prompts by traversing knowledge graphs in
a way that is guided by the learning patterns of Ausubel’s theory [5]. Prompts in each round are generated from a triplet
(e.g., Deciduous trees-Attribute-Abscission) with a variation over knowledge elements that can be asked or provided. Example
conversations under Scaffolding Prompts show how elements in the knowledge graph can be traversed in different ways to
create diverse multi-turn prompts.

ABSTRACT
Online learners are hugely diverse with varying prior knowledge,
but most instructional videos online are created to be one-size-
fits-all. Thus, learners may struggle to understand the content by
only watching the videos. Providing scaffolding prompts can help
learners overcome these struggles through questions and hints that
relate different concepts in the videos and elicit meaningful learning.
However, serving diverse learners would require a spectrum of scaf-
folding prompts, which incurs high authoring effort. In this work,
we introduce Promptiverse, an approach for generating diverse,
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multi-turn scaffolding prompts at scale, powered by numerous tra-
versal paths over knowledge graphs. To facilitate the construction
of the knowledge graphs, we propose a hybrid human-AI annota-
tion tool, Grannotate. In our study (N=24), participants produced 40
times more on-par quality prompts with higher diversity, through
Promptiverse and Grannotate, compared to hand-designed prompts.
Promptiverse presents a model for creating diverse and adaptive
learning experiences online.
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1 INTRODUCTION
While video learning online has become a widely adopted method
for a huge variety of learners, most online video learning environ-
ments provide the same lecture video for all learners. With the
one-size-fits-all design, learners may struggle with different parts
of the lecture content due to their varying prior knowledge. Finding
another video that better explains the learner’s struggle point might
be a solution, but this would require the learner to search for such a
video, incurring additional effort. Moreover, as learners are novices,
they might not have enough knowledge to discern which video can
help overcome their struggles.

One way to alleviate learners’ diverse pain points that arise
from one-size-fits-all video designs is to utilize diverse scaffolding
prompts, which provide hints and ask learners about learning con-
tent. For example, if the video’s explanation of a concept was not
detailed enough for a learner, then the learner would struggle with
understanding the content. With diverse prompts, if learners ask
the online learning system for help about the concept, then the
system can provide suitable scaffolding prompts that give learners
a chance to facilitate their understanding about the concept. The
prompt would let learners check their understanding, maintain
their engagement, and allow them to relate the concept with other
concepts they already know [11, 12]. Ultimately, the understanding
of the concept would broaden learners’ scheme of organizing and
perceiving new information, allowing learners to comprehensively
understand the lecture. For such support to be successful, a wide
spectrum of scaffolding prompts must be prepared to deal with
the diverse pain points of learners. However, due to the high cost
of authoring, manually creating diverse scaffolding prompts can
be impractical and, without this diversity, prompts will often fail
to comprehensively address the various concepts dealt within a
lecture.

In this work, we introduce Promptiverse, a scaffolding prompt
generation approach that uses knowledge graphs to create diverse
prompts at scale with low authoring cost. With knowledge graphs
on the lecture content, Promptiverse traverses through knowledge
entities and relations while considering the meaningful learning
patterns from Ausubel’s theory [4, 6], which gives insight into
designing pedagogically effective prompts. Promptiverse not only
generates a large number of prompts out of the traversed paths,
but also diversifies prompts’ content by varying which knowledge
elements are provided as hints and which are elicited from learners.
For example, in Figure 1, Promptiverse generates two different
scaffolding prompts (green boxes) by varying the traversed paths.
Prompts of these various contents allow alternative explanations
to be provided to learners who may struggle with understanding
the explanation of the video.

Though Promptiverse holds promise for the scalable creation of
prompts, constructing the underlying knowledge graph requires
lecture designers’ manual effort. Therefore, we designed Granno-
tate, a human-machine hybrid system that assists lecture designers

in annotating knowledge entities and relations on lecture tran-
scripts and building hierarchical knowledge graphs. We adopted a
mixed-initiative approach that combines human effort and machine
recommendations to reduce the human load when constructing
knowledge graphs. Based on the lecture designer’s first few anno-
tations, the machine recommends candidate knowledge entities,
their hierarchical relations, and relation classes, which can then
be refined by the lecture designers. Grannotate then allows the
lecture designer to inspect how their annotations would impact the
generated prompts by showing a preview of the type of prompts
that would be generated.

To evaluate Promptiverse and Grannotate, we recruited experts
with domain knowledge and teaching experience to create prompts
using four different approaches. The four approaches were (1) man-
ually designing prompts from scratch, and generating prompts
with knowledge graphs that were constructed using (2) manual,
(3) human-AI (using Grannotate), or (4) fully-automatic methods.
We compared the approaches in terms of the quantity, quality, and
diversity of prompts, and the self-reported cognitive load of ex-
perts. Results show that experts using Promptiverse generated 40
times more prompts with more diversity than those who manually
designed the prompts. Between the manual, human-AI, and fully
automatic graph construction methods, only graphs made with
human-AI method using Grannotate generated prompts that were
of comparable quality to the hand-designed prompts.We expect that
our approach can diversify the authoring of learning content and
lead online learning environments to provide eclectic and adaptive
learning experiences to different learners.

The contributions of this work are as follows:
• Promptiverse, a novel framework that generates diverse
prompts in a scalablemanner by traversing knowledge graphs
with effective learning patterns.

• Grannotate, a system that allows lecture designers to anno-
tate hierarchical knowledge structures for prompt genera-
tion, with the help of AI recommendations on entities and
relations.

• Experimental results showing that Promptiverse andGranno-
tate could produce a higher number of diverse prompts
while maintaining a similar level of quality to hand-designed
prompts.

2 RELATEDWORK AND BACKGROUND
As our work introduces a novel framework for generating diverse
scaffolding prompts in a large scale with the help of a human-AI
hybrid annotation tool, we review research on 1) pedagogical effects
of prompting, 2) Ausubel’s meaningful learning theory, 3) automatic
prompt generation, 4) knowledge representation in learning, and
5) knowledge graph annotation.

2.1 Scaffolding Prompts
In online video learning, one-size-fits-all design of videos pro-
vide limited support to learners with varying prior knowledge,
and scaffolding prompts can be one of the solutions to facilitate
learning. Instructors or learning systems can employ scaffolding
prompts to elicit learners’ knowledge through questions and ex-
planations [12, 24]. These prompts have generally been found to
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enhance learning [19, 29, 56]. They also stimulate learners’ retrieval
practice and can help them realize what they did not understand
from the lecture [15, 28]. Shin et al. [49] categorized video prompts
according to two dimensions: 1) comprehension-experience orien-
tation, whether the prompt is asking learners’ comprehension or
asking about the learning experience, and 2) the level of specificity,
whether the prompts refer to a specific part of lecture content or
not. In Shin et al.’s taxonomy, prompts that focus on experience
would not fall in our scaffolding prompts, and we specifically target
prompts on specific content. To provide the benefits of scaffold-
ing prompts to learners with diverse prior knowledge, we intro-
duce an approach to diversify the creation of such prompts. These
prompts can be used for various learning materials such as in-video
quizzes [28], interactive tutoring instruction in online learning [11],
and educational conversational agents [59].

2.2 Ausubel’s Meaningful Learning Theory
To create diverse scaffolding prompts, Promptiverse adopts Ausubel’s
theory [3–5] on learning patterns. The overarching idea inAusubel’s
theory is that knowledge is hierarchically organized. Based on this
idea, he proposed that meaningful learning involves understanding
the relationships between concepts and identifying new relations.
Whenmeaningful learning is done, knowledge is easily retained and
applied, whereas rote learning lets learners just memorize all scat-
tered knowledge [4, 38]. Meaningful learning is achieved when the
instructional design considers these hierarchical relationships be-
tween prior knowledge and new knowledge. Ausubel also described
three learning processes by which new knowledge is assimilated
into the existing cognitive structure. The first is superordinate
learning, where learning of a concept is facilitated by connecting
it to many well-acquainted examples. For example, when learn-
ing deciduous trees, knowing about instances of deciduous trees,
such as maples, oaks, and apple trees, would help understanding
the concept of deciduous trees. The second is subordinate learn-
ing which occurs when learners subsume new information to the
prior knowledge in a hierarchical manner. This type includes two
subtypes of subsumptions which are correlative subsumption
and derivative subsumption.Correlative subsumption occurs
when learners have to alter or extend their previously learned con-
cept to include the possibility of new information. For example,
when learners encounter a tree that has red leaves but only know
those with green leaves, then they need to extend the concept
of trees to include the cases of red leaves. This process enriches
the higher-level concept. Derivative subsumption is where new
knowledge is an instance or an example of a previously learned
concept so learners can leverage existing knowledge to learn the
new one. For example, a learner who knows that a tree has a trunk
would be able to use that knowledgewhen learning about a new tree,
that the new tree would also have a trunk. The last type is com-
binatorial learning, where learners relate previously acquired
knowledge to learn new information that is neither more inclusive
nor more specific than the previously acquired one. For example,
to learn something about pollination in plants, a learner might
relate it to the previously acquired knowledge of how fish eggs
are fertilized. While previous work has designed prompts based on
Ausubel’s high-level lessons [25], to the extent of our knowledge,

our work is the first to directly make use of pedagogically effective
subsumption patterns to create scaffolding prompts.

2.3 Generation of Prompts
Question-answering (QA) is a conversational activity that takes a
similar form to scaffolding prompts. Algorithmic QA generation
has been an active area of research in NLP and computational lin-
guistics. To drive research in this area, researchers have constructed
large crowdsourced conversational QA datasets (e.g. CoQA [44],
QuAC [13]), which collected dialogues between crowd workers
asking and answering a sequence of questions about a source docu-
ment. With collected datasets, researchers investigated approaches
to generate questions [42] or answers [7] in conversations. These
datasets and generated artifacts are close to scaffolding prompts
format-wise, but they do not consider educational effects in ques-
tion answering. On the other hand, QA systems that are designed
for pedagogical purposes consider educational effects but are less
diverse in terms of concepts dealt with and require a high manual
load for QA authoring. These systems were developed as dialogue
agents that help students learn programming [59], math [9], and
factual knowledge in science, safety, and English vocabulary [48].
Our approach aims to meet the goal of increasing the diversity
of concepts while considering educational effects and reducing
authoring load.

2.4 Knowledge Representation in Learning
Context

Learning is a process of integrating new information into existing
prior knowledge [37], and structured knowledge representations,
such as concept maps, flow diagrams, knowledge graphs, and tree
diagrams have often been used to support the process [1, 46]. Vari-
ous systems in the HCI domain were also designed to help learn-
ers structure knowledge with these representations. For example,
ConceptScape [32] provided learners with concept maps created
through crowdsourcing to help their comprehension and naviga-
tion. Similarly, Texsketch [53] supported readers to design diagrams
in the process of reading texts to allow them to integrate concepts
into a cohesive mental model. In this work, we leverage knowl-
edge representation for another purpose, to generate scaffolding
prompts in a scalable manner. To facilitate pedagogical effects of
generated prompts, we structure knowledge into knowledge graphs
with hierarchical relationships between concepts [39, 40]. Moreover,
we facilitate the process of structuring knowledge graphs with a
human-AI hybrid annotation tool.

2.5 Graph Annotation from Text Data
We introduce a knowledge graph annotation approach that builds
upon previous work on graph annotation tools and human-machine
hybrid annotation. Graph annotation tools allow annotators to ex-
tract how entities in the source medium (e.g., document) relate to
each other. Early tools, such as BRAT [52], visualized these anno-
tated relations on the text itself, and they could get visually complex
when many relations are annotated. More recent tools accompanied
the visualization of graphs to allow sensemaking of annotated rela-
tions [54]. Among tools that support visual representation, some
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supported the annotation of similar representations such as con-
cept maps or knowledge diagrams [32, 53] and were designed for
educational purposes.

To reduce human effort for annotating complex knowledge struc-
tures out of text documents, machine assistance can be a viable
solution. In natural language annotation, machine assistance has
been leveraged in many tools [17, 51], some of them providing ma-
chine learning-based recommendations [26, 27]. In this work, we
extend existing work to Grannotate, a knowledge graph annotation
tool that adopts AI to recommend candidate entities, if any of the
entities relate to each other, and how those entities relate. Moreover,
Grannotate is designed to assist the accurate generation of prompts,
by showing annotators how prompts would be generated out of
the currently annotated knowledge graph.

3 CHALLENGES IN DESIGNING
SCAFFOLDING PROMPTS

In this work, to support diverse learners in video learning, we
aim to design a scalable approach to creating diverse scaffolding
prompts. To learn requirements for effective scaffolding prompts
and difficulties in creating them, we conducted semi-structured
interviews with four instructors from a variety of domains ranging
from mathematics to computer science to history. In these inter-
views, we asked about (1) types of scaffolding prompts they mainly
generate and use, (2) how they make prompts for various learn-
ers, (3) challenges they face while authoring scaffolding prompts,
and (4) types of interventions that can alleviate their effort when
authoring prompts. Interviews were conducted remotely, and the
audio was recorded. After transcribing the audio, one of the authors
conducted iterative coding with inductive analysis. Coded results
were reviewed with another author.

3.1 Findings
Instructors prefer creating shallow follow-up prompts [12], which
focus on knowledge pieces that could be answered by directly
referring to a specific sentence given in the lecture content (e.g.,
what passes through the human heart?). Instructors emphasized
that effective shallow prompts enable instructors and learners to
interact more actively and motivate learners by letting them answer
the question easily. They would avoid using hard questions with
deep prompts [12], like discussing the student’s mental model about
the learned content (e.g., how would membrane being permeable
to certain substances relate back to capillary walls?). A series of
effective shallow prompts let learners relate each single knowledge
piece to other pieces and structure them in learners’ scheme.

Instructors mentioned that scaffolding prompts should reveal
more and more information with multi-turn in an adaptive fashion,
elaborating the learner’s answer over time and successively letting
them elicit knowledge with a instructor-given guide [12]. However,
as the turn goes on between the instructor and the learner, deciding
which knowledge to provide in each turn becomes challenging.
They noted that provided information needs to be related to tar-
get knowledge and covered in the lecture. Moreover, multi-turn
prompts should be dependent on each other. Instructors felt that
considering all these factors makes the authoring of multi-turn
scaffolding prompts effortful. Sometimes they could not prepare

multi-turn prompts in their lecture despite all the benefits because
of not enough time.

Instructors said they usually provide the same prompt to all
learners, but they were concerned if the prompt would not be
effective to learners with little prior knowledge who might require
more guides. To address this issue, P1 sometimes surveys learners’
prior knowledge and prepares a few different types of scaffold, with
a spectrum of knowledge granularity. However, it is very time-
consuming, so in most cases, to learners who cannot get the right
answer, P1 just would give answers instead of alternative prompts.

Finally, when lectures get longer, instructors often focus on
prompting about main concepts and fail to address minor concepts
that are difficult to understand without any scaffolds. Instructors
said they usually could not be prepared for all those details when
the lecture has too much content. They mentioned that they usu-
ally realize the need for scaffolding those details only after seeing
learners experiencing difficulties.

3.2 Design Goals
Based on the formative study, we present design goals for creating
scaffolding prompts.

• G1. Reduce the required time and effort in creating scaffold-
ing prompts that progressively give information related to
the target knowledge in multi-turn.

• G2. Create diverse prompts to provide adequate support for
learners with varying prior knowledge.

• G3. Create prompts that can comprehensively cover the lec-
ture, even for long ones.

4 PROMPTIVERSE: GENERATING PROMPTS
WITH KNOWLEDGE GRAPH

We introduce Promptiverse, a scaffolding prompt authoring ap-
proach that uses knowledge graphs to generate quality scaffolding
prompts in a scalable manner. Effective prompts should consider
relations between knowledge elements [12, 24], but, as the forma-
tive study revealed, creating diverse prompts while considering
knowledge relations is challenging. Promptiverse uses knowledge
graphs to computationally and scalably design diverse scaffolding
prompts while considering knowledge relations. That is, lecture
designers can structure lecture content into a knowledge graph,
and the Promptiverse uses the graph to generate prompts with
pedagogical patterns. Traversability of a knowledge graph is key
in achieving our design goals: multiple entities and relations in a
knowledge graph can be automatically traversed in multiple ways,
which can produce diverse scaffolding prompts (G1, G2). Moreover,
once the knowledge graph thoroughly covers the knowledge within
a lecture, it would create a comprehensive set of prompts that cover
most of the lecture content (G3).

Specifically, Promptiverse codifies 1) how a single prompt can be
generated, 2) how a dyad of prompts can be generated with single
prompts while keeping the coherency in prompt content, and 3)
how multi-turn prompts can be formulated with dyads of prompts
in pedagogically meaningful ways. As building knowledge graphs
involves the lecture designer’s effort, in a later section (Section 5),
we introduce our knowledge graph annotation system that provides
machine learning (ML) recommendations to facilitate the process.
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Figure 2: Different types of single prompts that vary by which knowledge elements in the triplet are provided or hidden.
Elicited knowledge elements are shaded in dark teal. In provide-all (left), both knowledge entities and the connecting relation
are given in the prompt. In elicit-entity (middle), one of the entities is asked while giving the other entity and the relation as
hints. Elicit-relation (right) asks about the relation while giving both entities as hints.

4.1 Representing Lecture Content into a
Knowledge Graph

As a preliminary, we describe how we represent lecture content
into a knowledge graph that consists of entities and relations [40].
Entities are concepts from the lecture, which are considered educa-
tionally important by the lecturer. On the other hand, relations ex-
plain how those entities are related to each other. With one relation,
there would be two connected entities, and these three elements
constitute a triplet. By combining multiple triplets, a knowledge
graph is formed (knowledge graph in Figure 1). Our knowledge
graph structure mainly focuses on hierarchical relations between
knowledge entities, as leveraging such relations is known to facili-
tate learning [4].

To formulate our knowledge graph structure around hierar-
chical relations, we referred to existing knowledge relation tax-
onomies [18, 20, 22, 34, 36, 40]. Considering previous work, we
identified seven cross-hierarchy relations and four in-hierarchy
relations. Cross-hierarchy relations explain how entities in differ-
ent hierarchy levels relate, hence one being higher than the other
(e.g., “machine learning” (hypernym) and “supervised learning”
(hyponym)). Cross-hierarchy relations span over a spectrum, from
causal relations (Cause-Effect) to examples (Abstract-Instance), sub-
types (Hypernym-Hyponym), features (Object-Attribute), inclusion
(Whole-Part), means (Purpose-Used), and substeps (Process-Steps)
relations. On the other hand, in-hierarchy relations explain how
entities in the same hierarchy level relate to each other (e.g., “su-
pervised learning” is comparable to “unsupervised learning”). For
this type, we identified Sequence, Compare/Contrast, Identification,
and Coreference. Note that Identification and Coreference are dif-
ferent in that Identification is used when two different entities are
considered to have the same meaning in the lecture, while Coref-
erence is used to indicate that two entities are the same thing. We
name any relations that fall into cross- or in-hierarchy relations
as class relations. For cases where the knowledge relations are not
best explained with this taxonomy, we also allow open relation,
which is a relation freely definable by the lecture designer. In the
next sections, we explain how this knowledge structure is used to
generate prompts.

4.2 Mechanism for Generating Prompts
We explain our novel mechanism of generating scaffolding prompts
from knowledge graphs on lecture content. Promptiverse focuses
on prompts that correspond to shallow questions according to Chi
et al. [12]. Our scope sets a lower participation threshold to elicit

more learner participation. Among shallow follow-ups, we more
specifically focus on prompts that explain or ask about the relations
between knowledge elements.

4.2.1 Generating a Single Prompt. The most basic mechanism for
generating prompts out of a knowledge graph is to derive a sin-
gle round of prompts from a triplet. For example, when there is a
triplet that consists of the entities of “shape of distribution” and
“modality”, and a connecting relation of “attribute”, we can design a
prompt that asks about the relation between the entities, like “How
are modality and shape of distribution related?” In a prompting sen-
tence, a knowledge element can serve two functions—1) be provided
in the sentence or 2) be a subject to be elicited from learners [24].
For example, in the previous example statement, “modality” and
“shape of distribution” are entities provided and the relation of “at-
tribute” would be elicited from learners. Note that in a prompting
sentence, at least two knowledge elements should be provided. For
example, if more than two knowledge elements are hidden and are
to be elicited from learners, the question would be too challenging
as there is little information to derive the answer to be elicited (e.g.,
Supervised learning has which relation to what?).

Based on how knowledge elements are elicited or provided, a
single triplet can turn into three versions of single prompts (Fig-
ure 2). If the online learning system is aware of the learner’s level
of understanding, these different prompts can be presented adap-
tively to learners. For example, if the learner barely understands
the lecture content, it would be more effective to provide them with
all the information rather than eliciting it.

Among the three versions (Figure 2), the first type is provide-all,
where all information in a triplet is provided to the learner. The
other types all involve elicitation. These types are elicit-entity, and
elicit-relation. Elicit-entity provides one entity and a relation, and
elicits the other entity in the triplet. Elicit-relation provides both
entities and asks students about the relation between those entities.

4.2.2 Generating a Dyad of Prompts. Prompting can be more effec-
tive by combining multiple prompting sentences into one coherent
set of multi-turn scaffolding prompts. One basic mechanism for
generating such multi-turn prompts is to share an entity between
the two prompts (Figure 3a), as that entity would bridge the context
between the prompts. Another basic mechanism is not to elicit
already provided or elicited knowledge elements again (Figure 3b),
as asking about the already mentioned information would be point-
less in many cases. The only exception is when the learner could
not answer a specific entity and the prompt asks for the entity in
other ways. In this case, the following prompt would give more
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Figure 3: Two mechanisms for generating a dyad of prompts. Examples that do and do not follow the mechanisms are both
shown. a) A dyad of prompts share an entity. In the figure, oak is being shared between two rounds of prompts. However, in
the counterexample, the following prompt does not have any entity shared with the preceding one. b) The following prompt
should not elicit a knowledge entity from the preceding prompt. In the given example, oak is not elicited, but provided in
the second turn. On the other hand, in the counterexample, oak is elicited even though it has been mentioned before, thereby
breaking coherence of prompts.

Figure 4: Example prompts from a superordinate learning
pattern. Subordinate knowledge entities (white) are pro-
vided first and then the superordinate knowledge entity
(purple) is elicited after. It facilitates the learning of the su-
perordinate entity by connecting it back to many subordi-
nates.

information to help learners to answer the entity. With these two
mechanisms, we can generate diverse dyads from three entities and
two relations, by permutating on whether to elicit or provide in
each prompt turn and, if eliciting, on which entity to elicit.

4.2.3 Generating Educationally Effective Prompts. While dyads of
prompts can seem syntactically coherent, it is not clear which se-
ries of dyads would be educationally effective. To expand dyads
of prompts to educationally meaningful multi-turn prompts, we
took Ausubel’s theory as inspiration and designed mechanisms for
them [3, 5]. Ausubel’s theory explains meaningful learning happens
when considering how each knowledge would be organized with
respect to other related knowledge in cognitive structure. Specifi-
cally, Ausubel emphasized the role of hierarchical relations between
knowledge entities and the order in which they are introduced to
learners. With our mechanism, we adopt these patterns into traver-
sals on a knowledge graph and describe how these traversals can
turn into prompts.

There are four types of multi-turn scaffolding prompting mecha-
nisms inspired by Ausubel’s theory: superordinate, correlative, de-
rivative, and combinatorial prompting. First, superordinate learning
(Figure 4) happens when learners first learn subordinate knowledge
elements (Hypernym-Hyponym,maple and oak in Figure 4), and
then relate that to one superordinate entity (deciduous tree in Fig-
ure 4). Hence, in superordinate prompting, each subordinate entity

Figure 5: Example prompts from a correlative learning pat-
tern. One superordinate entity (white), its subordinate en-
tities (white), and connecting relations are first given as
prompts, then a new subordinate entity (purple) is intro-
duced in the next prompt. This learning pattern enriches the
knowledge about one superordinate knowledge by adopting
the new subordinate.

is provided gradually first, and then the superordinate entity is pro-
vided or elicited, as in the example in Figure 4. Here, the learning
would be more effective if all subordinate entities have the same
relation to the superordinate entity, as learners would more easily
consider subordinate entities together compared to when relations
are all different.

The second is correlative learning (Figure 5), where the learner
has amodel of a superordinate entity (deciduous tree in Figure 5), and
learns new related subordinate knowledge (Hypernym-Hyponym
and oak in Figure 5) related to that superordinate entity. In correl-
ative prompting, this pattern would be realized by consecutively
providing or eliciting other subordinate entities and relations to a
superordinate entity as in the example of Figure 5. The subordinate
relations do not have to be consistent, as correlative learning is
about adding new related knowledge to one superordinate entity.

In derivative learning (Figure 6), there is a superordinate (decid-
uous tree in Figure 6) and a subordinate(maple in Figure 6) entity
in hierarchical relations of either Abstract-Instance or Hypernym-
Hyponym. These entities have relations of the same class (Whole-
Part in Figure 6) stemming out of them. In derivative prompting,
the prompt expects the learners to leverage the hierarchical rela-
tionship between the superordinate and subordinate entities when
learning the shared knowledge relations. For example, both in Fig-
ure 6-1 and 2, the hierarchical relationships are provided or elicited
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Figure 6: Example prompts from a derivative learning pattern. First, a prompt about entities (white) in a hierarchical relation
(either in Hypernym-Hyponym or Abstract-Instance) is introduced, followed by a prompt about how one of those entities
relates to an entitywith a stemming relation (purple). This pattern expects learners to leverage the relation that stems fromone
of the entities in the hierarchy relation to understand the other stemming relation in the counterpart entity in the hierarchy
relation.

Figure 7: Example prompts from a combinatorial learning pattern. First, a prompt (or prompts) about entities in a comparable
relation (white) is introduced, followed by a prompt about how one of those entities relates to an entity with a stemming
relation (purple). This pattern expects learners to leverage the relation that stems from one of the entities in the comparable
relation to understand the other stemming relation in the counterpart entity in the comparable relation.

first. Then, the relation stemming from either superordinate or sub-
ordinate entity (Whole-Part) would be subsequently provided or
elicited. Here, the hierarchical relations are restricted to Hypernym-
Hyponym and Abstract-Instance, as stemming relations can be
shared in these two.

The last type is combinatorial learning (Figure 7). In this, there
are comparable knowledge entities (maple and oak in Figure 7).
These entities have relations of the same class (Whole-Part in Fig-
ure 7) stemming from them, similar to derivative learning. Compara-
ble entities can share the same superordinate entity (deciduous tree
in Figure 7), related in Hypernym-Hyponym or Abstract-Instance.
It is because one superordinate’s hyponyms or instances would be
comparable to each other. In combinatorial prompting, the prompt
expects the learners to use the comparable relations when learn-
ing the knowledge relations that stem out of comparable entities.
As in Figure 7, first, the comparable relations are prompted, ei-
ther by directly referring to comparable relation or to the shared
superordinate. Then, the relation stemming from one of the compa-
rable entities (Whole-Part) is provided or elicited, expecting the
comparable relation would help learn the stemming relation.

5 GRANNOTATE: KNOWLEDGE GRAPH
ANNOTATION SYSTEM

While Promptiverse can create diverse prompts by traversing a
knowledge graph, the effort required to build a knowledge graph [2]
can be a bottleneck. To reduce this barrier, we introduce Grannotate,
an annotation tool that leverages a visualization of a knowledge
graph and AI-powered recommendations. We first investigated
challenges in building knowledge graphs with an existing baseline
tool. Based on this investigation, we designed our tool.

5.1 Challenges in Graph Annotation
To identify challenges in graph annotation, we conducted a pilot
study with an existing tool. We recruited five participants (grad-
uate students). Among the three lecture topics that we prepared
(Machine Learning, Chemistry, Data Structure), each participant
picked one topic that they were most familiar with. Each study
session lasted for 40 minutes. During the session, participants were
first given instruction on the annotation guideline. Then, they used
BRAT [52], which allows users to annotate knowledge entities and
their relations on a document. The tool shows annotated triplet
relations on the document as two highlighted text snippets with an
arrow connecting them. Each participant watched a lecture video on
the topic they picked and annotated the lecture transcript on BRAT.
At the end of the study, participants provided feedback through a
semi-structured interview [41]. The sessions were video recorded
for analysis.

5.1.1 Findings. Videos were coded for different annotation activi-
ties, including reading, adding a node, adding a relation, labeling a
relation, and editing. One of the authors did iterative coding with
inductive analysis, and the resulting codes were reviewed by the
other authors. At a high level, we found four critical challenges with
the existing graph annotation tool. First, only with the text, it is
hard to identify the whole structure of the graph (C1). Participants
said that this was because the graph gets more complex as they an-
notated more entities and relationships. Second, it is hard to verify
whether the annotated entities and relations are correct based only
on the examples in the guideline (C2). For example, they were not
sure if they annotated entities accurately—i.e., with the correct span
(e.g., “electronic structure in an atom” vs. “electronic structure”?).
They also wanted some examples on how to use the relation classes
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Figure 8: The interface of Grannotate. On the left, a) transcript is shown with annotations. On the right, b) the color codes
for the relation classes are shown, and b-1) annotations are visualized in a graph. On the transcript, the user can select a
part of the text to annotate an entity, or select two entities to annotate a relation. The user can also annotate the relation
by connecting two entities on the graph. a-1) With an entity or relation selected, the user can also edit or remove them. The
tool also provides AI recommendations to lower the load of users. a-2) Based on the currently annotated entities, the tool
recommends other candidate entities. a-2) If the annotator selects an entity, the tool recommends a potential candidate entity
that the selected one could be related to.

in the guideline with the entities that they annotated. Third, it is
hard to assure if all important entities are covered, as there can be
many entities (C3). Additionally, participants were sometimes not
sure about what entities should be considered important enough to
be annotated. For example, P2 said "Did I pick every entity that I
should do? I might have missed some of them..." Lastly, it is hard
to choose the relation class because they are many and unfamiliar
to annotators (C4). Participants needed to refer back to the whole
guideline again when annotating a new relation.

5.2 Annotation Interface
Based on the challenges (C1-4) identified from the pilot study, we
designed our hybrid human-AI annotation tool. First, our tool ad-
dresses the problem of sensemaking about the currently annotated
results (C1) by having two representations of an annotated graph:
overlaid on the transcript and a graph visualization (Figure 8). The
visualization is designed to remove clutter and help the user more
easily perceive the relations between the annotated concepts. The
user can use both representations to add and edit entities and re-
lations. On the transcript, the user can add knowledge entities by
selecting a portion of the text. Then, the annotated part is high-
lighted in yellow (Figure 8a) and the entity is also visualized on
the graph-side (Figure 8b-1). By selecting this entity either on the
transcript or the graph, the user can edit the name of the entity or
delete that entity (Figure 8a-1). Edited names are only shown on
the graph. The user can also add a relation by either selecting two
entities on the transcript or connecting one entity to another on the
graph with a dragging motion. When two entities are connected,

the modal for specifying the class of relation is shown (Figure 9). In
the modal, the user can select a class from either the cross-hierarchy
classes or the in-hierarchy classes. If the user thinks that no class
adequately explains the relation between the selected entities, they
can specify the relation as an open relation with free text input
(Figure 9c-2). If the user wants to switch the order of entities, they
can click on the “Switch Order” button.

When selecting a relation class, it can be difficult for the user
to understand how the annotated class will be used in prompts
(C2). Hence, our tool also shows how prompts would be created out
of the annotation (Figure 9e). For example, if “planning” is anno-
tated to be a hyponym of “human intelligence”, the system shows
example prompts like “Planning is a type of human intelligence”,
or “What can be a type of human intelligence?”. When they select
the “Abstract-Instance” class, annotators can also add the setting
of the instance, which explains the specific setting in which the
instance appears (e.g., “In the setting of classifying images with a
cat, a image set with or without a cat is an example training data.”).
Once the user confirms the relation class, the annotated relation
is visualized on both the transcript and the graph (Figure 8). The
class of “Coreference” is the only exception, as entities related with
this class are shown as a single node on the graph. The user can
edit or delete relations by selecting them on the graph-side.

To alleviate the burden of having many options for entities and
relation classes, our tool provides AI-driven recommendations (C3
and C4). There are three types of recommendations: 1) entity recom-
mendation, 2) relation existence recommendation, and 3) relation
class recommendation. Entity recommendations and relation ex-
istence recommendations highlight potentially important entities
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Figure 9: Modal for selecting a relation class. a) The chosen
entities are shown, with a direction from left to right. b) But-
ton for switching the direction of the relation. c) Section
where the annotator can decide the relation class. Classes
for cross-hierarchy relations and in-hierarchy relations are
shown. c1) AI recommended classes are accompanied by a
“Recommended” highlight below the class button. The cho-
sen class is shown in its color code. c2) When the annotator
thinks that none of the classes is adequate, they can come
up with a custom open relation. d) When Abstract-Instance
is chosen as the class, the annotator can also add a setting
to give more context to the prompt that would be generated.
e) To help annotators understand how their class selection
would impact the prompt generation, an example prompt
for the annotated class is shown.

and relations among all the possible options. Entity recommen-
dations are provided after the user annotates five initial entities.
These recommendations are shown as light-green highlights on the
transcript-side, that the annotators can click on when they want
to add them (Figure 8a-2). Edge existence recommendations are
provided when the user selects one of the entities. On the transcript
these recommendations are shown as light-blue edges (Figure 8a-3).
Finally, the edge class recommendations are shown when the user

enters the modal for specifying relation classes, by highlighting the
recommended classes (Figure 9c1). These recommendations are the
top three classes predicted by an edge class classification model we
trained based on a GPT-based large-scale natural language model.
Details will be presented in Section 5.3.

5.3 AI Recommendation Architecture
We designed three different pipelines to support each of the three
recommendations mentioned in Section 5.2, which are entity, rela-
tion existence, and relation class recommendations.

To provide entity recommendations, we use the DYGIE++ frame-
work [57], which supports three information extraction tasks with
state-of-the-art performances: named entity recognition, relation
extraction, and event extraction.With DYGIE++, we trained amodel
on the SCIERC dataset [35], which is a collection of 500 scientific
abstracts annotatedwith scientific entities, their relations, and coref-
erence clusters. With the trained model, we first extracted entities
from the whole script. When the user annotates five initial entities,
from extracted entities, our pipeline identifies entities that co-occur
with these initial entities in the same sentence. These identified
entities are recommended to the user as entity recommendations.
As the user annotates more entities, this process is repeated with
the newly added entities. For relation existence recommendation,
we also extracted relations using the same framework. When the
user selects an entity, the pipeline identifies if that entity is included
in one of the relations found by the framework. If such a relation is
found, the user is recommended to relate the selected entity with
the other entity found in that relation.

Our relation class recommendation is enabled by a Transformer-
based classification model which takes two entities as input and
predicts the top three classes that best explain the relation between
those two entities. Specifically, we adopted p-tuning approach [30,
31, 33, 50], which tunes “prompts” that can guide Transformer-
based language models to serve the targeted task. GPT-based mod-
els could be guided to serve different tasks according to different
natural language “prompts”. For example, by inputting a natural
language prompt “Estimate relational classes between two entities”
to the model, the model can be guided to serve the task. Instead
of hand-designing these natural language tokens, the p-tuning
approach learns the optimal prompt tokens on the continuous em-
bedding space, to replace the natural language prompts. We adopted
this approach as it has shown reliable performance even with a
small number of training data instances [33]. We used GPT-Neo
with 2.7 billion parameters [8] as our language model. To train the
model that classifies relation, we used 180 samples of data points
from lectures on five different domains (Networking, Design and
Product, Probability and Statistics, Electrical Engineering, and Ma-
chine Learning). Two authors annotated knowledge entities and
relations separately and merged individual results through discus-
sion. As our corpus has a low number of instances on Sequence,
it was excluded from the recommendation. Moreover, as Corefer-
ence is a straightforward relation that indicates the same entity,
we assumed that annotators would not struggle with selecting this
class and excluded it also from the recommendation. It is partly
also because having more classes would lower the performance of
the algorithm. We used 70% of the dataset as the training set and
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Figure 10: The design of evaluation. We collected prompts from four conditions, which vary with the involvement of expert
participant, AI components, and Promptiverse. InHand, all annotations aremanually created by experts fromHandCollection.
In the other three conditions, Promptiverse was used to generate prompts from knowledge graphs. InAuto, knowledge graphs
were created only with AI algorithms. In the other two conditions, experts annotated knowledge graphs with our annotation
interface in KG collection. In No-HAI, experts did not get AI support while experts in HAI got AI recommendations from
Grannotate. KG Collection was designed to be within-subject design, where experts annotated graphs with both No-HAI and
HAI conditions. Collected prompts were analyzed in four analyses, which scoped on efficiency, quality, diversity, and cognitive
load. In quality analysis, evaluation was done with expert evaluators in Quality Evaluation. In cognitive load, Auto was not
analyzed as it does not involve any expert.

30% as the test set. For training, we split the training set into a 7 : 3
ratio for training and validation. Training details are explained in
the Appendix. Our model had 64% of accuracy on test data, which
is (the number of true relation class being included in our top-3
predictions)/(the number of samples in the test set)×100. While the
accuracy is not extremely high, it is above the random chance of
the true relation being included in the recommendation (33.3%) and
hence could give meaningful support to users. Moreover, the model
would make annotators not over-rely on the algorithm, because its
below-perfect accuracy would require annotators to consider the
recommendation.

5.4 Interface Implementation
Our graph annotation interface is implemented as a web application
by using HTML, CSS, and JavaScript. We used React and Node.js
as our front-end and back-end frameworks, respectively. For stor-
ing annotation data, we used MongoDB. We implemented the AI
recommendation server separately, as a Flask-based API.

6 EVALUATION AND RESULTS
To assess if Promptiverse and Grannotate lead to the scalable gen-
eration of diverse scaffolding prompts, we conducted a series of
experiments. Specifically, we ask the following two questions:

• RQ1. How the quantity and quality of prompts from Prompti-
verse would be different from those created fully manually?
Which approach would impose more load on doing the task?

• RQ2. How the quality and quantity of prompts from Promp-
tiverse would be impacted by different levels of automation
involved in creating knowledge graphs? Which approach
would impose more load in doing the task, if annotators are
involved?

To answer these questions, we conducted data collection and
analyses considering the following four conditions:

• Hand: Prompts are manually designed.
• Auto: Prompts are generated with Promptiverse, and input
knowledge graphs are created fully automatically with mod-
els used in AI recommendation features.

• No-HAI : Prompts are generatedwith Promptiverse, and input
knowledge graphs are manually created with the tool that
does not have AI recommendation features.

• HAI : Prompts are generated with Promptiverse, and input
knowledge graphs are created in a hybrid manner using
Grannotate.

Our evaluation design is summarized in Figure 10.

6.1 Method
For video materials fromwhich prompts are created, we used videos
from two sub-domains of computer science, AI and IoT. We chose
these two sub-domains as they are topically distant enough that
they cover different knowledge entities, hence being able to show
the generalizability of our approaches.

To collect and evaluate prompts, we conducted three rounds of
data collection (Orange boxes in Figure 10). The first round focused
on collecting manually designed prompts (Hand Collection). The
second round focused on collecting knowledge graphs for No-HAI
and HAI conditions (KG Collection). The last, third round of data
collection evaluated the quality of collected prompts (Quality Evalu-
ation). Note that for three conditions that involve human annotators,
we adopted a mix of within and between-subjects design, where
No-HAI and HAI are combined as within-subject design while they
are combined with Hand as between-subject. While this approach
is not conventional, we argue that this approach still allows us to
reliably answer our questions. First, our design would give a penalty
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to our proposed conditions, No-HAI or HAI, as participants would
have felt more fatigue by going through two task conditions. Hence,
if our approach turns out to have higher quality and quantity, then
it means that our approach shows benefit despite penalties in the
study design. Second, as No-HAI and HAI are compared in the
same study condition, it would not impact answering our second
question.

6.1.1 Hand Collection. For Hand Collection, we recruited twelve
experts (age M = 26.3 and SD = 2.8, 7 females and 5 males, 4
undergraduate students, 4 graduated students, and 4 industry work-
ers) and asked them to create prompts on one lecture video. We
recruited them by using word of mouth and posting advertisements
in online forums such as Twitter, Facebook, and the online com-
munities of several colleges. Participants had expertise in one of
the domains of our target videos. They also had the experience of
teaching using teaching materials that they made ranging between
6 months and three years. For example, these experts included
TAs who have taught undergraduate students and made learning
materials. Since the videos were not created by the participants,
we asked them to watch the videos two times before the study.
During the study session, we first gave participants instructions on
the scope of prompts to be created, which are scaffolding prompts
that deal with relations between knowledge entities in the lecture.
Then, participants created prompts for 25 minutes. They are then
asked to do a NASA-TLX survey on their cognitive load in creating
prompts. The session ended with a short interview asking about
their experience of doing the task. Participants were paid 20,000
KRW (approximately USD 17) for their participation.

6.1.2 KGCollection. ForKGCollection, we recruited another twelve
experts (age M = 26.5 and SD = 3.2, 7 females and 5 males, 4 un-
dergraduate students, 6 graduate students, and 2 industry workers)
using the same recruiting process. In this collection, with our graph
annotation system, participants were asked to annotate two lecture
videos we selected. Hence, each participant should have expertise
in both domains while having teaching experience in at least one
of the domains. Their experiences are ranging from 6 months to 3
years. Similar to Hand collection, participants were asked to watch
the subject videos two times before joining the study session. They
were first given instructions on the purpose of the study and usage
of the graph annotation tool. Then, participants annotated graphs
from lecture scripts first with one of No-HAI or HAI condition,
assigned randomly, and then with the other condition. For each
condition, participants were given 25 minutes to create the knowl-
edge graph. The session ended with a NASA-TLX survey and a
short interview on their annotation experience. Knowledge graphs
from this collection are fed into Promptiverse and used as prompts
for No-HAI and HAI conditions. Participants were given 30,000
KRW (approximately USD 25.5) for their participation.

6.1.3 Quality Evaluation. For Quality Evaluation, we recruited two
experts as evaluators. They were asked to evaluate prompts from
both domains, and hence, should have expertise in both domains
while having teaching experience. For this quality evaluation, we
first sampled a subset of prompts from each condition. Prompts col-
lected in Hand Collection were used for Hand, and those generated
with knowledge graphs from KG Collection were used for No-HAI

and HAI. To collect prompts for Auto, we ran our recommendation
algorithms, created knowledge graphs only out of them, and then
fed those knowledge graphs into Promptiverse. From each video for
each condition, we randomly sampled 10 prompts, hence resulting
in 80 prompts in total (10 × 2(video) × 4(conditions)).

The evaluators are asked to watch the video before joining the
session. During the session, they were given sample prompts in
a blind condition, and we asked them to score questions accord-
ing to a provided scoring rubric, which is based on the framework
for analyzing scaffolding strategies [55] and our goal of creating
accurate prompts. The rubric had six criteria including Direction
maintenance,Cognitive structuring,Reduction of degrees of
freedom, Recruitment, Contingency management and frus-
tration control, andAccuracy of knowledge. These criteria eval-
uate how well these prompts support students’ metacognitive ac-
tivities, cognitive activities, and student affect, while reflecting
accurate knowledge conveyed in the video. Details are explained in
the Appendix. These rubrics were asked on a 5-point scale (Not sat-
isfied to Satisfied). We paid evaluators 30,000 KRW (approximately
USD 25.5) for their participation in 1.5 hours session.

6.2 Results
To answer our research questions on efficiency, quality, and diver-
sity of generated prompts, we conducted three analyses on the
created prompts. We also answer questions about the cognitive
load of experts and their experience through the NASA-TLX survey
and qualitative analysis. For each analysis, we describe our method
of analysis, and then the results.

6.2.1 Efficiency Analysis. To assess efficiency in creating prompts,
we did a statistical test on the number of prompts created by each
expert. Note that Auto does not have an expert, hence only has
one data point for each video. To test if a difference exists among
conditions, as there were few data instances that are not in normal
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Figure 11: The number of prompts generated in each con-
dition. For Hand, No-HAI, and HAI, the number of prompts
generated from each participant is plotted. Note that each
participants’ data in Hand are close and overlap with each
other in this plot. For Auto, the counts of prompts from
two videos are shown. Red connecting lines indicate that
the difference between two connected conditions is signif-
icant. Auto, No-HAI, and HAI generated significantly more
prompts compared to Hand.
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distributions, we conducted a non-parametric Kruskal-Wallis test.
Then, as a posthoc analysis, we conducted Dunn’s test.

Result: Participants generate significantlymore prompts with Promp-
tiverse than by hand. The four conditions had a significant differ-
ence in the number of prompts generated (H = 24.59, p < 5e − 5).
In post hoc test, we found that Auto (AVG = 300.00, n = 2), No-HAI
(AVG = 316.83, n = 12), and HAI (AVG = 210.00, n = 12) gener-
ated significantly more prompts compared to Hand. (AVG = 4.92,
n = 12) (p < 0.05).

6.2.2 Quality Analysis. To analyze the quality of generated prompts,
we conducted a statistical analysis on quality evaluation results. For
each evaluation question of each prompt, we first averaged scores
from evaluators. Then, for each evaluation question, we conducted
a Kruskal-Wallis test against four conditions, each of which had 20
prompts. We chose a non-parametric test as the data were ordinal.
As a posthoc test, we conducted Dunn’s test.

Result: Prompts generated with HAI are not significantly differ-
ent from those generated by Hand in quality, except for contingency
management/frustration control. The result of the quality analysis
is presented in Figure 12. From a Kruskal-Wallis test, we found that
four conditions were significantly different in five criteria, Direction
maintenance (H = 18.2,p < 5e−3), Reduction of degrees of freedom
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Figure 12: Quality of prompts measured according to six cri-
teria. Error bars indicate the standard deviation. The red con-
necting line indicates that the difference between the two
conditions is significant. Hand outperformed Auto and No-
HAI in direction maintenance, reduction of degrees of free-
dom, and recruitment, whileHand andHAI were not signifi-
cantly different in those criteria. The only significant differ-
ence between Hand and HAI was observed in contingency
management/frustration control.

(H = 12.85, p < 0.005), Recruitment (H = 10.36, p < 0.05), Contin-
gency management/frustration control (H = 11.84, p < 0.01), and
Accuracy of knowledge (H = 30.60, p < 5e − 06). Only in Cognitive
structuring, a Kruskal-Wallis test result did not show significance
(H = 4.21, p > 0.1). With pairwise comparisons, we found out
that Hand showed higher quality compared to Auto and No-HAI
in four criteria (Direction maintenance, Reduction of degrees of
freedom, Recruitment, Contingency management/frustration con-
trol, p < 0.05). However, when Hand is compared to HAI, except
for Contingency management/frustration control (p < 0.05), Hand
had no significant difference from HAI (p > 0.05). Moreover, Auto
showed significantly low Accuracy of knowledge than all other
conditions (p < 0.05). Auto is also outperformed by HAI in Direc-
tion maintenance, Reduction of degrees of freedom, and Accuracy
of knowledge (p < 0.05).

6.2.3 Diversity Analysis. We analyzed the diversity of generated
prompts from each condition by embedding them into the vector
space, as it is an effective way to quantify the semantic distance
between textual data, or how different they are [10, 45]. We used
BERT to embed prompts [16]. With embedded prompts, we con-
ducted both quantitative and qualitative analyses. For quantitative
analysis, we measured the “area” on the vector space that is covered
by prompts from each condition. While the “distance” between ele-
ments has been widely used as the metric for diversity [10, 45], it
is a metric about “how two elements are different”. As we are more
curious about “how many elements span over semantic space”, we
instead measured “area”. We calculated the area in the PCA-reduced
vector space with the dimension of five, as high dimensionality in-
creases the computation cost. To measure the area, we ran K-means
clustering for prompts from each condition with K of 2 to more
accurately measure the area. Here, we fixed K for all conditions
to have a fair comparison between them. Moreover, we set K to
be two as it assured clusters to be distinguishable to each other in
most conditions (with high silhouette values [47]). After that, to
get the area metric, we ran a convex hull algorithm on each cluster
and summed areas from all clusters.

We also conducted a qualitative analysis of the visualization and
underlying prompts. To visualize them in two-dimensional space,
we took PCA of all vectorized prompts from all conditions (d=2).
To analyze the visualization and the underlying prompt, one of
the authors first inspected the overall pattern in the visualization,
retrieved several prompts (at least 10 samples) from the pattern
of interest, and iteratively analyzed them with inductive analysis.
The coded result was reviewed with another author. We conducted
this analysis on two corpora of texts: one with the full prompts
generated from Promptiverse and the other only with a series of
triplets from the prompts of the first corpus. We included the second
corpus to investigate knowledge-wise diversity without considering
linguistic features of prompts. For this analysis, one of the authors
manually extracted knowledge entities and relations from hand-
designed prompts.

Result: Promptiverse creates more diverse prompts than hand-
designing. From the area analysis (Figure 13), we could learn that
area covered by Hand is smaller than No-HAI and HAI in all videos
and embedding approaches. It would be partly due to a small num-
ber of prompts from Hand, but also because prompts from Hand
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Figure 13: Visualization of prompt embeddings and their covered area for each video (AI and IoT) and embedding approach
(Full Prompts and Triplets). Prompts were embedded with BERT, dimension-reduced with PCA algorithm, and then visualized
on 2D planes as scatter plots. Embedding was done either on the raw texts of prompts (Full Prompts) or only on the triplets of
knowledge used in prompts (Triplets). The area was calculated for each condition, by taking convex hull area of all clusters
of K-means algorithm (K=2) when the dimension is reduced to five. HAI and No-HAI has higher diversity compared to Hand,
when compared in covered area.
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Figure 14: Results of NASA-TLX survey. Error bar indicates the standard deviation. The red connecting line indicates that the
difference between the two conditions is significant. In temporal demand, Hand participants reported higher load than those
in No-HAI and HAI.

could not cover the wide area, which can be notably seen in Fig-
ure 13b-d. In the AI video, Auto showed the area comparable to
No-HAI or HAI based on the prompt embedding approach. How-
ever, in the IoT video, Auto had a small area, even similar to that
of Hand. Comparing No-HAI and HAI, in the AI video, No-HAI
occupied a larger space, but the trend was opposite in IoT.

From the qualitative analysis of visualization and prompts, we
found various patterns of how these prompts are distributed in
semantic space. At a high level, prompts divide into long and short
prompts in all videos and all embedding approaches. When not
considering linguistic features in prompts (hence, in Triplets), from
the AI video (Figure 13c), we could observe that Auto prompts are
separated from No-HAI and HAI in shorter prompts, which was
due to inaccurate prompts generated from machine errors in Auto
(e.g., “artificial intelligence” is a type of “AI”). In IoT video (Fig-
ure 13d), due to the low number of Auto prompts, this pattern was
not observed. However, in IoT, when did not consider linguistic
features, short prompts for HAI and No-HAI were separated, each
to the bottom right and center of the visualization, respectively. In
these, similar knowledge elements are annotated in different ways
between No-HAI and HAI (e.g., ‘RFID’ has an attribute of ‘have a
processor inside there’ in No-HAI vs. ‘RFID tag’ uses ‘processor’
in HAI ). In the AI video, some of the full prompts from Hand (Fig-
ure 13a) were occupied in a space that no other conditions reside,
meaning that either knowledge or linguistic features of prompts

Hand are far different from those of other conditions. When we
looked into triplet visualization (Figure 13c), most hand-designed
prompts resided close to prompts from other conditions, which indi-
cates that diversity of Hand in AI-Full Prompt was due to linguistic
features.

6.2.4 Cognitive load Analysis. To analyze how prompt creator’s
cognitive load differs between conditions, we conducted a statistical
test on NASA-TLX survey results. We excluded the question on
physical demand as our tool is less about exerting physical tasks. As
questions are asked on an ordinal scale, for each asked NASA-TLX
question, we conducted a non-parametric Kruskal-Wallis test on
three conditions that involved experts (Hand, No-HAI, HAI ). For
the posthoc test, we conducted Dunn’s test.

Result: Experts felt less temporal demand when using Promptiverse
than hand-designing prompts. The survey result is presented in
Figure 14. From the Kruskal-Wallis test, we found that a significant
difference was only found in temporal demand (H = 8.05, p < 0.02).
For the rest, significance was not found (p > 0.05). In pairwise
comparisons for temporal demand, significance was found between
Hand and the other conditions (p < 0.01).

6.2.5 Qualitative Analysis. We qualitatively analyzed video record-
ings on participants’ tool usage and interview data. One of the
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authors did iterative coding with inductive analysis, and the other
authors reviewed the coding result.

Result: With AI recommendations and samples of possible prompts,
participants self-reflect on their annotations to create high-quality
prompts. Participants said that AI recommendation helped them
initially focus on a smaller number of candidates when classifying
relation classes, from eleven (the number of relation classes) to
three (the number of recommended classes). After they learned
what relations mean, their experiences on relation class recommen-
dation depend on the inclusion of participants’ initial decision in
the recommendation and their confidence in their initial decision.
When what participants initially considered is included in the rec-
ommendation, they would follow it without hesitation. However,
when their initial option is not in the recommendation, their behav-
iors would differ with their confidence. If they are confident, they
would not follow the recommendation without hesitation. However,
when they were less confident, they self-reflected on their decisions,
went back to the guideline, and checked confusing relations mul-
tiple times. P6 said “It takes more time and I should think more
when recommendations are different from mine, but it could give a
chance to reconsider my choice and remind me of examples and
definitions in the guideline.”

Participants mentioned that entity recommendations capture
important entities they missed. Entity recommendations also re-
duced the load in deciding and specifying the span of entities, as
participants could simply click the recommended entities. Sample
prompts from participant’s annotations made them check if they
annotated entities and relations correctly, and if prompts to be
generated would be coherent and accurate.

Result: Participants manually create prompts similarly to how
Promptiverse generates prompts. To create prompts, many Hand
participants chose which entity to elicit first and specified relations
between the elicited entity and the answer of the previous prompt.
This is similar to how Promptiverse generates a dyad of prompts
as described in Section 4.2.2. They also made multiple turns when
all subordinate entities have the same relation to the superordinate
entity as Promptiverse used correlative learning pattern. However,
they had struggles that resonate with the formative study results
(Section 3.1): 1) choosing which entity to ask, 2) creating an initial
prompt that has the potential to bring more turns, and 3) building
a prompt that can be related to answer of previous prompt. This
load might have resulted in low efficiency, low diversity, and high
temporal demand compared to approaches in Promptiverse.

6.2.6 Summary. Putting all analysis results together, we answer
our RQs.

For RQ1, HAI generates much more prompts than Hand while
showing similar prompt quality except for contingency manage-
ment. Moreover, experts felt less temporal demand in HAI than in
Hand. HAI also generates more diverse prompts including many
different entities, relations, and their combinations compared to
Hand. Therefore, we conclude that the combination of Promptiverse
and Grannotate enables the efficient creation of diverse prompts
that are comparable in quality to hand-designed ones.

For RQ2, comparing HAI against Auto and No-HAI, there is no
significant difference in the number of prompts generated. How-
ever, in terms of quality, when compared to Hand, only the quality
of HAI prompts is not significantly lower than the quality of Hand
prompts. Moreover, prompts from Auto showed lower quality in
direction maintenance, reduction of the degree of freedom, and
accuracy of knowledge compared to HAI. The level of diversity be-
tween these conditions depends on the video. While no significant
difference was found in cognitive load, HAI had a trend of having
higher mental demand than No-HAI, which might be because AI
recommendations led participants to self-reflect. However, as re-
ported in quality analysis (Section 6.2.2), self-reflection might have
increased the quality of prompts. Overall, HAI guided participants
to create higher quality prompts with on-par efficiency compared
to Auto and No-HAI.

7 DISCUSSION
We discuss human-AI interactions in annotation process, how our
approach would enrich prompting systems, the role of knowledge
graphs in prompt generation, the generalizability of our approach
in other learning domains, and limitations.

7.1 Human-AI Interaction as Learning Process
In our study, experts constructed knowledge graphs by annotat-
ing lecture transcripts both manually and with AI-support from
Grannotate. In relation class annotation, the experts’ behavior was
different in these two conditions—without AI, they tended to choose
between relation classes without much hesitation or learning, but
with AI, the experts appeared to learn through the process. Dis-
agreements with the AI recommendations made them cast doubt
on recommended classes, re-check the guidelines, and self-reflect,
which helped them gain a deeper understanding of the classes and
more certainty about their choices.

Interestingly, this human-AI process parallels how scaffolding
prompts help online learners: the experts are learners of a knowl-
edge graph annotation task and the AI recommendations act as
scaffolds that help them learn about classes that they find challeng-
ing. Based on these observations, one future work direction can be
a workflow for an instructor-assistant-AI collaboration that helps
assistants follow the instructor’s annotation method for prompt
generation. In this workflow, the instructor would provide initial
annotations to train the AI model and then the assistants would
receive HAI support that recommends annotations similar to the in-
structor’s. Then, similar to our study findings, we hypothesize that
the machine recommendations would scaffold assistants’ learning
so that their knowledge graphs would be aligned with the instruc-
tor’s mental model.

7.2 Promptiverse-driven Prompting
Applications

We showed Promptiverse with Grannotate generates a greater num-
ber and diversity of prompts. Now we suggest how our approach
could be used to provide different prompts to learners with varying
prior knowledge to alleviate the problem of the one-size-fits-all de-
sign of lecture videos. First, as Promptiverse can generate prompts
with a different number of turns (e.g., subordinate and correlative
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Figure 15: Knowledge graph created from a music lecture video. With Promptiverse, in the music domain also, hierarchical
knowledge could be structured in a graph and diverse scaffolding prompts could also be generated out of it.

prompts), these can be used to gradually provide hints based on how
learners answer to the prompts. For example, if a learner could not
answer a prompt that asks about the characteristics of “machine
learning”, the prompting system can provide more questions or
hints to facilitate the learner’s understanding. Second, with Promp-
tiverse’s diverse prompts and a component that recognizes learners’
levels of understanding [14, 43], Promptiverse can adaptively pro-
vide scaffolding prompts to elicit each learner’s understanding. For
example, if the system knows that a learner is struggling with a
concept, it can give an explanation about the concept instead of
asking questions. Moreover, by considering whether the concepts
in prompts are in a higher hierarchy or in a lower hierarchy in the
knowledge graph, the learning system can give prompts about the
details of the lecture to learners who already have a good under-
standing, and prompts about higher-level concepts to those who are
struggling. Third, with a comprehensive set of prompts from Promp-
tiverse, the learning system can provide prompts when a learner
knows that they are struggling and requests scaffolding. This would
minimize the chance of learner misunderstanding propagating to
other lecture content. Fourth, knowledge graphs of multiple lec-
tures can be merged together with the small additional effort of
maintaining entity consistency across lectures, and these merged
graphs can give further support to learners. For example, cross-
lecture prompts can allow learners to more comprehensively relate
concepts over the course.

7.3 Role of Knowledge Graphs in Prompt
Creation

Promptiverse’s way of creating prompts appeared to simulate the
strategies used by lecture designers when hand-designing prompts.
For example, they considered the relations between knowledge

entities to create a dyad of prompts or correlative prompts in a
similar way Promptiverse does. However, hand-designing is limited
as lecture designers struggled in deciding which entity to proceed
to when designing more turns and giving more hints about target
entities. On the other hand, Promptiverse allows lecture designers
to only focus on structuring knowledge by handling the task of
turning them into prompts with meaningful learning patterns. With
traversability, many different concepts and relations can be covered
in diverse ways to create a spectrum of pedagogically effective
prompts. However, Promptiverse currently uses knowledge graphs
in a limited way, as it only considers triplets to create a round of
prompts. Hence, more complex prompts, like those that involve
more than two entities or ask about ‘why’ and ‘how’, would be diffi-
cult to generate with Promptiverse. To use knowledge graphs more
richly, the Promptiverse can be combined with other approaches
to allow more flexible traversals that are not limited to triplets.
For example, recent approaches that combine knowledge graphs
with pre-trained language models [21, 58, 60] learn how to turn
complex knowledge structures into natural language, and these can
potentially be used to generate prompts about complex knowledge
incorporated in knowledge graphs. However, future work must
first validate the effectiveness and accuracy of these methods in
knowledge-guided tasks.

7.4 Generalizing to Other Learning Domains
We conducted our study using two videos from different sub-domains
in computer science.While our study showed that experts who used
Promptiverse and Grannotate generated significantly more prompts
than when they did so manually, the two chosen videos might not
represent the broad spectrum of topics that can be covered in online
lecture videos.
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Still, we believe Promptiverse can be generally used for domains
other than the ones we evaluated it for. For demonstration, one
of the authors annotated a lecture video1 on music. The lecture
video explains popular drum patterns, from what they are to what
characteristics and effects they have. Figure 15 shows the resulting
knowledge graph which has a rich hierarchical knowledge struc-
ture based on the video. This example graph can create diverse
pedagogically meaningful prompts. For example, by adopting a
combinatorial learning process, the learning system can first in-
form the learner about the hyponyms of popular drum patterns,
and then ask about what are the characterizing attributes of a drum
pattern compared to those of other drum patterns (left in Figure 15).
Figure 15 also shows how a superordinate learning could be applied
on this graph. Generalization into the music domain also reveals
one limitation of Promptiverse: it only considers linguistic content
when prompting, not other media. Employing such multimedia
content in prompts can be interesting future work.

To generalize Promptiverse’s prompt-generating capabilities,
however, Grannotate should also be generalizable. While our ver-
sion of Grannotate is tuned for STEM fields, we can expand it
to other domains by changing the underlying models. For entity
and relation existence detection, we can expand it to other do-
mains by using similar pretrained models that have been trained on
datasets from a variety of domains, including GENIA (biomedicine),
ChemProt (chemistry), WLPC (biology), MECHANIC (general sci-
ence), ACE05 (newswire, broadcast news, broadcast conversation,
weblog, and discussion forums) [23, 57]. While these datasets cover
many different domains and text styles, some domains, such as
web programming, are not covered with these datasets. However,
for domains which these datasets cannot cover, a potential future
direction could be to gather a small amount of data and use the
P-tuning approach to detect entities and relations in such domains.
As our work showed, the same approach can also be used to ex-
pand the edge class classification component to other domains with
relatively little effort for data collection.

While the generalizability of our approach seems promising,
it is still unclear whether our study findings would also hold for
other domains. Future work can conduct studies with lecture videos
from various domains to confirm our findings or to identify which
domains can or cannot be covered with our approach.

7.5 Limitations
Our work has a couple of limitations which we address in this
subsection.

The experience and frequency of using prompting strategies
in experts’ everyday teaching could affect their speed of creating
prompts as well as the prompt quality. While we provided partici-
pants’ information of teaching experience, it cannot explicitly show
how much they used prompting strategies while teaching.

It is hard to use our approach for generating prompts with com-
plex knowledge that consider more than two entities (hence, more
than one relation). Injecting knowledge graphs into pre-trained
language models [21, 58, 60] can present an opportunity to explore
how to handle such complex knowledge.

1https://www.youtube.com/watch?v=c7ffMObdxro

8 CONCLUSION
This paper introduces Promptiverse, a framework that generates
diverse scaffolding prompts by traversing knowledge graphs on
lecture content in pedagogically meaningful patterns. To facili-
tate the usage of Promptiverse, we support lecturer designers’ an-
notation processes with Grannotate, which provides AI recom-
mendations and samples of possible prompts based on the user’s
annotations. In our evaluation, participants who used Prompti-
verse with Grannotate produced 40 times more prompts than those
who hand-designed, with on-par quality and higher diversity in
prompts. When compared to other graph construction methods
with either full automation or full manual effort, only graphs made
with Grannotate generated prompts that had comparable quality to
the hand-designed prompts. We hope our work can open up more
opportunities in supporting a spectrum of learners by creating
diverse learning strategies.
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A P-TUNING METHOD
To recommend relation classes, we trained soft prompts that can
guide GPT-Neo model with 2.7 billion parameters [8], which is
an open-source GPT-based language model. Instead of manually
designing natural language prompts to guide this type of models,
P-tuning approach [30, 31, 33, 50] automatically searches for high-
performing prompt token embeddings in a continuous space. To
employ this technique, we composed prompts as [P0:1,C , P2:5, E1, P6,
E2, R] where Pi is the ith prompt token, C is the context sentences
that include both knowledge entities, E1 and E2 are the knowledge
entities, and R is the edge class. When E1 and E2 are in different
sentences, we concatenate their sentences to form C . P-tuning
regards Pi as pseudo tokens and the embeddings of these tokens
are trained by backpropagating the CrossEntropy loss from the
GPT-Neo model.

On our training dataset (which is 88 data samples), We used the
Adam optimizer, the learning rate of 0.001, weight decay of 0.0005,
and batch size of 4. We also used an early stopping technique to
prevent overfitting on the training set. Ourmodel’s prediction result
on the test was 64%, which is (the number of true relation class

being included in our top-3 predictions)/(the number of samples in
the test set)×100.

B CRITRIA OF RUBRIC FOR QUALITY
EVALUATION IN 6.1.3

To score questions we provided a scoring rubric, which is based
on the framework for analyzing scaffolding strategies [55] and our
goal of creating accurate prompts. The rubric had six criteria as
follows:

• Direction maintenance: The lecturer’s prompts keep the
learning on target and maintain the learner’s pursuit of a
particular objective.

• Cognitive structuring: The lecturer’s prompts provide ex-
planatory structures that organize and justify lecture con-
tent.

• Reduction of degrees of freedom: The lecturer’s prompts
take over parts of a task that the student is not yet able to
perform and thereby simplify the task for the student.

• Recruitment: The lecturer’s prompts get students interested
in the lecture content and help them adhere to it.

• Contingency management and frustration control: The lec-
turer’s prompts concern the facilitation of student perfor-
mance via a system of rewards and punishments as well as
keeping students motivated via the prevention or minimal-
ization of frustration.

• Accuracy of knowledge: The lecturer’s prompts accurately
reflect knowledge conveyed in the video.
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