
TaleBrush: Visual Sketching of Story Generation with Pretrained
Language Models

John Joon Young Chung
jjyc@umich.edu

University of Michigan
Ann Arbor, MI, USA

Wooseok Kim
ooooseok@kaist.ac.kr

KAIST
Daejeon, Republic of Korea

Kang Min Yoo
kangmin.yoo@navercorp.com

Naver AI LAB
Seongnam, Republic of Korea

Hwaran Lee
hwaran.lee@navercorp.com

Naver AI LAB
Seongnam, Republic of Korea

Eytan Adar
eadar@umich.edu

University of Michigan
Ann Arbor, MI, USA

Minsuk Chang
minsuk.chang@navercorp.com

Naver AI LAB
Seongnam, Republic of Korea

Figure 1: TaleBrush allows users to intuitively control language-model-based story generation by sketching the protagonist’s
fortune. The sketch (green shaded area in A3) indicates the protagonist’s fortune (𝑦-axis) over the chronological sequence of
the story (𝑥-axis). The higher the line, the better the fortune. With the width of the sketch, the writer can indicate a ‘tolerance’
for how much the generated sentence can deviate from the drawn input. The user can set the protagonist’s name (A1) and the
initial portion of a story (A2) before giving sketching input. After sketching, TaleBrush updates with new story sentences (the
blue vertical line, B1) and calculates the fortune visualization (the blue line and dots in B2). The writer can iterate with direct
editing or re-sketching. A “Generate Again” button (B3) will produce new sentences for the same sketch. The eraser tool allows
writers to remove a portion of the drawn sketch and generate sentences without explicit limits for the erased part. The writer
can also set constraints on how surprising the generation should be by opening a separate panel (B4). A history tool (B6) allows
writers to access past generations.

ABSTRACT
Advancing text generation algorithms (e.g., GPT-3) have led to new
kinds of human-AI story co-creation tools. However, it is difficult
for authors to guide this generation and understand the relation-
ship between input controls and generated output. In response, we

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9156-6/22/04.
https://doi.org/10.1145/3491101.3519873

introduce TaleBrush, a GPT-based tool that uses abstract visualiza-
tions and sketched inputs. The tool allows writers to draw out the
protagonist’s fortune with a simple and expressive interaction. The
visualization of the fortune serves both as input control and repre-
sentation of what the algorithm generated (a story with varying
fortune levels). We hope this demonstration leads the community to
consider novel controls and sensemaking interactions for human-AI
co-creation.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; • Computing methodologies → Natural language gen-
eration.

https://doi.org/10.1145/3491101.3519873


CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Chung et al.

KEYWORDS
story writing, sketching, creativity support tool, story generation,
controlled generation

ACM Reference Format:
John Joon Young Chung, Wooseok Kim, Kang Min Yoo, Hwaran Lee, Ey-
tan Adar, and Minsuk Chang. 2022. TaleBrush: Visual Sketching of Story
Generation with Pretrained Language Models. In CHI Conference on Hu-
man Factors in Computing Systems Extended Abstracts (CHI ’22 Extended
Abstracts), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3491101.3519873

1 INTRODUCTION
Pretrained generative language models, such as OpenAI’s GPT-
3 [15], are rapidly advancing and enabling new types of human-
AI story co-creation tools [2–5, 9, 10]. Story co-creation is often
iterative. A writer sets the initial story sentence that is used as a
prompt for the AI to generate new sentences (which then become
new prompts). For example, the user can write “Melissa fought a
dragon.” The AI can append a sentence: “She used magic to create
a barrier around her.” The writer can allow the AI to continue by
using this new sentence as input (with or without modification) or
re-start the process to try to get to a reasonable narrative.

One limitation of this approach is that they are not easily steered
given some ‘vision’ the writer has. For example, the writer might
want Melissa to begin with bad luck but eventually reach a happy
ending. However, such story dynamics are challenging to encode
with existing story co-creation systems. Many algorithms do not
yet allow specifications that change over different parts of the story.
Existing interfaces (e.g., text inputs or sliders) are cumbersome in
controlling time-varying parameters. AI generation is also ‘unreli-
able’ in that it may not produce exactly what the writer wanted (e.g.,
a fortune that varies from very low to very high). To validate that
the output text was close to the input parameters may require the
writer to manually compare one representation (e.g., a numerical
fortune level) to another (the text). With these frictions, fine control
is infeasible, making iteration slow and effortful.

In this work, we present TaleBrush, a story generation system
that leverages sketching and visualizations for intuitive control and
understanding of generated texts (Figure 1). With simple sketched
lines, writers can easily and expressively specify a sequence of for-
tune (Figure 1A3). That is, the protagonist’s fortune is specified as a
time series (expressive) that can be created in a single stroke (easy).
The lightweight and ambiguous nature of sketching [8, 12] also
manages the writer’s tolerance of uncertainty and errors in con-
trol, making them more acceptable. TaleBrush employs the same
time-series visualizations (Figure 1B2) to support sensemaking of
generated results. For these interactions, we implemented steerable
story generation architecture. First, we trained prompts that guide
the language model to perform different story generation tasks [13].
Second, we built a module that steers the language model to gener-
ate according to the input sketch [11]. We hope this demonstration
can stimulate the CHI community to leverage the potential of us-
ing visual controls and visualizations to make iterative human-AI
co-creation intuitive and frictionless.

2 TALEBRUSH: INTERACTION
Below, we briefly motivate our selection of controlled story at-
tributes and explain interactions in TaleBrush’s interface.

2.1 Iterative Co-creation With Line Sketching
TaleBrush is designed for generative human-AI co-creation of a
short storyline. TaleBrush uses sketched lines as a control mecha-
nism and visualizes generated stories to support sensemaking. Inter-
nally, the system is powered by a pretrained large language model,
GPT-Neo [1]. GPT-Neo serves story generation with prompts tuned
in the continuous token embedding space [13, 14]. TaleBrush also
includes a GeDi-based control module, which uses a smaller lan-
guage model finetuned to steer the generation with control in-
put [11]. With generations as potential ideas, the system supports
the planning stage of the writing process [6, 7]. As writers might
not yet have a concrete direction in this stage, we expect them to be
more accepting of generated results. Writers would use generated
sentences as writing prompts or as a means to overcome writer’s
block. Novice writers can use stories generated from TaleBrush as
demonstrations that can jumpstart their writing.

Due to algorithmic uncertainty in ML-based generation, we ex-
pect that writers would use TaleBrush iteratively. TaleBrush uses
interactive controls to help writers to reach what they favor with a
small number of iterations. Specifically, TaleBrush allows writers
to specify how the protagonist’s fortune should change within the
generated story. To specify these sequential attributes, TaleBrush
leverages sketching-based control (green shaded area in Figure 1
A3 and B2). This interaction is simple and expressive, as a series
of values can be easily expressed with a single line drawing. The
visualization of the generated story (vertical blue line in Figure 1 B2)
helps writers to understand how the control specification is applied
to the generation—they can simply compare the input sketch with
the visualization. Intuitive control and sensemaking interactions
would ultimately help writers with the iterative use of the system.

TaleBrush mainly focuses on controlling the level of the pro-
tagonist’s fortune in chronological order. For example, if the main
character of the story experiences their career high, they would be
in good fortune. On the other hand, if they lose their close friends,
they would be in a bad fortune. TaleBrush does not yet support the
generation of non-linear narratives, such as flashbacks. The writer
can also specify how tightly fortune control would apply in the
generation at the cost of generation time.

TaleBrush also allows control of the level of surprise, or how
unexpected the generation should be. For example, an unsurprising
sentence after “Melissa fought a dragon” can be “The dragon was a
big, green, scaly beast”. On the other hand, a surprising one can be
“Melissa killed a giant robot with a robot dragon”.

2.2 Interface
2.2.1 Text Editor and Canvas. TaleBrush is composed of a text
editor (Figure 1A2 and B1) and a canvas. The canvas supports both
fortune sketching as well as visualization of the generated output
(Figure 1A3 and B2). The text editor contains multiple ‘bullet points’,
each standing for a single sentence. To these bullet points, the
writer can either add their sentences or use TaleBrush to generate
sentences. They can also add new bullet points by hitting enter.

https://doi.org/10.1145/3491101.3519873


TaleBrush: Visual Sketching of Story Generation with Pretrained Language Models CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Or, they can erase some by deleting the bullet point marker. Each
bullet point will be visualized as a dot in the canvas, and sequential
dots will be connected with lines. The 𝑥 and 𝑦 positions of dots
will be decided with the sequential position of the sentence in the
story and the protagonist’s fortune, respectively. The visualized
protagonist’s fortune is calculated by an ML recognition algorithm.
If no sentence exists in a bullet point, there will be a visual gap in
the corresponding position of the canvas.

2.2.2 Generate By Sketching. TaleBrush allows writers to control
the generation by manipulating the fortune level time series with
sketching. The writer can sketch the arc of how the character’s
fortune should change. Similar to fortune visualization, 𝑥 and 𝑦

position of points in the sketched arc specifies the desired sequence
and fortune level. After the sketch is drawn for some sentences,
TaleBrush generates story texts on those sentences. When there
is no sentence after the sketched part, TaleBrush tries to continue
the story. However, if there are sentences after the sketch (an ‘end’
context), TaleBrush attempts to infill (i.e., take into account the
sentences before and after the ‘blank’ part of the story). The writer
can also erase portions of their sketch (Figure 1B5). In those spots,
TaleBrush generates sentences without fortune constraints. With
this function, evenwithout concrete ideas on the character’s fortune,
writers can try a wide range of generated sentences. The writer
can always ask for new sentences for the same sketch by clicking
the “Generate Again” button (Figure 1B3). The writer can iterate
on generation by redrawing only a portion of the sketch. They also
can directly edit the generated text in the text editor.

Sketching Speed for Generation Control Tightness. With text gen-
eration, there is always some randomness that limits the ability to
perfectly match the desired control. That is, the generative algo-
rithm can’t produce a sentence with an exact fortune level and still
guarantee coherence. To address this, the text generation system
can produce multiple outputs and provide the best match to the
writer. This, naturally, comes at the cost of increased generation
time. TaleBrush allows users to describe how well they would like
generated sentences to follow the given fortune sketch. When the
writer sketches slowly, TaleBrush tries more generations to find
the one that more matches the given fortune parameter. The slow
→ accurate mapping was selected to be semantically oriented to
the idea that we draw more carefully and slowly when we want an
accurate line. The sketch visualizes this controlled precision with
a width, which indicates where the generated sentences would be
more likely to fall (Figure 1 A3 and B2). The width follows the me-
dian of control errors shown from our test data, with the maximum
count of tried generation decided by the sketching speed. Hence,
the range will be tighter with slower sketching. This speed-based
width specification is decided in the unit of a sentence. Hence, if
one drew faster on one sentence in a single stroke, the width will
be tighter on the quickly drawn part.

Surprise Level Control. TaleBrush allows specification of surprise
levels for generations. When the writer checks “surprise in a sepa-
rate panel”, another control panel opens where the writer can draw
surprise levels (Figure 2).

2.2.3 Multi-Story Management. If the writer tries generation mul-
tiple times, TaleBrush stores each attempt so that the writer can

Figure 2: The writer can specify the level of surprise for the
generation. When “Surprise in a separate panel” is checked,
TaleBrush shows a panel where they can draw a thin green
line to specify the surprise level.

Figure 3: Thewriter can compare previously generated stories
with a drop-down list (A). When the drop-down is open, the
fortune arcs of all stored stories are visualized in low opacity
on the canvas (B). The writers can check each stored story
text and arc visualization by hovering their mouse over the
item in the list.

compare and choose any version (Figure 3). They can browse the
list of generated stories with the drop-down menu. As they open
the menu, all previously generated stories will be shown on the
canvas with low opacity. The writer can hover their mouse over an
item, and the textbox will show the corresponding story. Moreover,
the story’s visualization will be highlighted on the canvas. The
writer can roll back to one of the past generations by clicking the
item in the list.

3 CONCLUSION
We presented TaleBrush, a human-AI story co-creation tool that
allows writers to control the generation of textual stories with the
sketched arc of the protagonist’s fortune. Our GPT-based story



CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Chung et al.

generation architecture uses sketching of the protagonist’s fortune
as an input to steer the story. To allow the writer to better under-
stand generated output, TaleBrush provides the visualization of the
output upon the sketch input. This allows the writer to compare
the output to specification, and refine as needed. By leveraging
the abstract representation and sketch interactions, TaleBrush was
built to introduce a novel way to support frictionless and intuitive
human-AI co-creation.

REFERENCES
[1] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-

Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow. http:
//github.com/eleutherai/gpt-neo

[2] Alex Calderwood, Vivian Qiu, Katy Ilonka Gero, and Lydia B Chilton. 2020.
How Novelists Use Generative Language Models: An Exploratory User Study.. In
HAI-GEN+ user2agent@ IUI.

[3] John Joon Young Chung, Shiqing He, and Eytan Adar. 2021. The Intersection
of Users, Roles, Interactions, and Technologies in Creativity Support Tools. In
Conference on Designing Interactive Systems. ACM, 1817–1833.

[4] Elizabeth Clark, Anne Spencer Ross, Chenhao Tan, Yangfeng Ji, and Noah A.
Smith. 2018. Creative Writing with a Machine in the Loop: Case Studies on
Slogans and Stories. In 23rd International Conference on Intelligent User Interfaces
(Tokyo, Japan) (IUI ’18). Association for Computing Machinery, New York, NY,
USA, 329–340. https://doi.org/10.1145/3172944.3172983

[5] Andy Coenen, Luke Davis, Daphne Ippolito, Emily Reif, and Ann Yuan. 2021.
Wordcraft: a Human-AI Collaborative Editor for Story Writing. arXiv preprint
arXiv:2107.07430 (2021).

[6] Linda Flower and John R. Hayes. 1981. A Cognitive Process Theory of Writing.
College Composition and Communication 32, 4 (1981), 365–387. http://www.jstor.
org/stable/356600

[7] Nick Greer, Jaime Teevan, and Shamsi Iqbal. 2016. An Introduction
to Technological Support for Writing. Technical Report MSR-TR-2016-
1. https://www.microsoft.com/en-us/research/publication/an-introduction-to-
technological-support-for-writing/

[8] Mark D. Gross and Ellen Yi-Luen Do. 1996. Ambiguous Intentions: A Paper-like
Interface for Creative Design. In ACM Symposium on User Interface Software and
Technology. ACM, 183–192.

[9] Ting-Yao Hsu, Yen-Chia Hsu, and Ting-Hao (Kenneth) Huang. 2019. On How
Users Edit Computer-Generated Visual Stories. In Extended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI EA ’19). Association for Computing Machinery, New York, NY, USA, 1–6.
https://doi.org/10.1145/3290607.3312965

[10] Ting-Yao Hsu, Chieh-Yang Huang, Yen-Chia Hsu, and Ting-Hao Huang. 2019.
Visual Story Post-Editing. In Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for Computational Linguistics,
Florence, Italy, 6581–6586. https://doi.org/10.18653/v1/P19-1658

[11] Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar,
Shafiq Joty, Richard Socher, and Nazneen Fatema Rajani. 2020. GeDi: Generative
Discriminator Guided Sequence Generation. arXiv:2009.06367 [cs.CL]

[12] J.A. Landay and B.A. Myers. 2001. Sketching interfaces: toward more human
interface design. Computer 34, 3 (2001), 56–64. https://doi.org/10.1109/2.910894

[13] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale for
Parameter-Efficient Prompt Tuning. arXiv:2104.08691 [cs.CL]

[14] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT Understands, Too. arXiv:2103.10385 [cs.CL]

[15] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo
https://doi.org/10.1145/3172944.3172983
http://www.jstor.org/stable/356600
http://www.jstor.org/stable/356600
https://www.microsoft.com/en-us/research/publication/an-introduction-to-technological-support-for-writing/
https://www.microsoft.com/en-us/research/publication/an-introduction-to-technological-support-for-writing/
https://doi.org/10.1145/3290607.3312965
https://doi.org/10.18653/v1/P19-1658
https://arxiv.org/abs/2009.06367
https://doi.org/10.1109/2.910894
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2103.10385

	Abstract
	1 Introduction
	2 TaleBrush: Interaction
	2.1 Iterative Co-creation With Line Sketching
	2.2 Interface

	3 Conclusion
	References

