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Figure 1: TaleBrush uses a line sketching interaction for intuitive control and sensemaking of story generation with GPT-
based language models, closing the gap in the iterative co-creation process between humans and Al In our prototype, the
protagonist’s ‘fortune’ is controllable. The writer first decides the protagonist’s name (A1), writes a portion of a story (A2),
and then sketches how the protagonist’s fortune should change in the story (A3, green shaded area). The x position of the
sketched line indicates the chronological position in the story (sentences are the units). The y position shows how good or bad
the protagonist’s fortune should be (higher, better). The width of the line indicates the possible variance in the fortune of the
generated sentences. Given the line sketch, TaleBrush will generate story sentences (B1, indicated with blue) and visualize the
result on the original sketch (B2, the blue line and dots). The writer can always directly edit the generated text. They can also
iterate by generating new text for the same sketch (B3, clicking on ‘Generating Again’) or revising their sketch and generating
new text. Additional options allow the writer to specify how ‘surprising’ the generation should be (B4) or using the eraser tool
(B5) to erase their sketch. Where the line is erased, TaleBrush generates unconstrained sentences. A history dropdown (B6)
allows the writer to browse previously generated sentences.
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ABSTRACT

While advanced text generation algorithms (e.g., GPT-3) have en-
abled writers to co-create stories with an Al, guiding the narra-
tive remains a challenge. Existing systems often leverage simple
turn-taking between the writer and the Al in story development.
However, writers remain unsupported in intuitively understanding
the AT’s actions or steering the iterative generation. We introduce
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TaleBrush, a generative story ideation tool that uses line sketch-
ing interactions with a GPT-based language model for control and
sensemaking of a protagonist’s fortune in co-created stories. Our
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empirical evaluation found our pipeline reliably controls story gen-
eration while maintaining the novelty of generated sentences. In a
user study with 14 participants with diverse writing experiences, we
found participants successfully leveraged sketching to iteratively
explore and write stories according to their intentions about the
character’s fortune while taking inspiration from generated stories.
We conclude with a reflection on how sketching interactions can
facilitate the iterative human-AI co-creation process.
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1 INTRODUCTION

Advances in pretrained generative language models, such as Open
ATl’s GPT-3 [119], have enabled new kinds of human-Al story co-
creation tools [24, 27-29, 61, 62]. In many of these tools, the story
co-creation process is iterative [24, 28, 29, 51, 143]: first, a writer
gives the initial story sentences, such as “Melissa fought a dragon”
Then, using the writer’s sentence as a prompt, the Al tool appends
story sentences or phrases. For example, the tool can generate: “She
used magic to create a barrier around her” The writer can modify
the story directly, start from scratch, hoping for better results, or
continue the iterative process by adding another sentence.
However, consider a case where the writer has some idea of how
the story should unfold. They would like to build tension for Melissa
by giving her some bad luck with the dragon and only in the end
boost her fortune. Unfortunately, steering the text generation in this
way is hard both from the algorithmic and interaction perspective.
First, most controlled story generation algorithms, which can be
guided with inputs like topical keywords, apply the same control to
the whole generated story. However, as the writer wanted Melissa
to experience bad luck first and then end up with a happy ending,
they would need to specify different parameters to different parts
of the story. Such granular sequence control is not yet possible in
many controlled story generation algorithms. Second, even when
the generation algorithm allows such granular sequence control,
existing interfaces (e.g., text inputs or sliders) are not intuitive or
useful for controlling or sensemaking in the generative process. For
example, when there is a series of granular controls (e.g., sliders),
specifying them can be cumbersome (e.g., inputting multiple nu-
merical control values). Sensemaking, or understanding what the
algorithm will do, or has done, is similarly difficult. To understand
if the generated story follows the given parameters, writers have to
compare each generated story part with each granular parameter.
These frictions make iterative co-creation slow and effortful.
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Figure 2: Kurt Vonnegut’s sketched line drawing of Cin-
derella’s fortune over the course of her story [142].

In this work, we propose that visual sketching interactions can
facilitate granular sequence control and sensemaking in iterative
story generation. Sequential properties of stories have frequently
been visually expressed for intuitive understanding or planning [59,
71,79, 92,118,121, 137, 138, 142]. For example, Kurt Vonnegut [142]
drew out how a character’s fortune changes in a simple time-series
line drawing (Figure 2). This line drawing approach has inspired
writers to adopt visual arcs to plan out their stories [34, 100, 122].

With this visualization as inspiration we created TaleBrush (Fig-
ure 1). TaleBrush is focused on human and Al co-writing short story
outlines by allowing writers to control the generation according
to the level of fortune the protagonist experiences [34, 121, 142].
Writers can specify the sequence of a character’s fortune with a
simple and expressive interaction (Figure 1A3). Using a single stroke
(simple), the writer defines the fortune over the entire protagonist’s
‘time-series’ (expressive). The sentences generated by TaleBrush are
reflected back to the user as a line drawn on top of the original
sketch (Figure 1B2). The lightweight and intentionally ambiguous
nature of sketching [49, 84] manages the writer’s expectation re-
garding the fidelity of control, making uncertainties and errors
in controllability acceptable. To realize this interaction, we im-
plemented a technical architecture that achieves steerable story
generation by training 1) learnable prompts that guide a language
model to serve different story generation tasks [87] and 2) a control
module that steers the language model to generate stories according
to the given sketch [83].

We conducted a technical evaluation of TaleBrush and found that
our approach can reliably steer generations that are still novel and
tolerably coherent in flow and grammar. From a user study on 14
participants with varying expertise in story writing, we found that
participants could use the sketching control to iteratively steer the
generation to find inspiring stories that align with their intentions
about the protagonist’s fortune. Some participants also used line
sketches as a plan when editing the generated texts. In our discus-
sion section, we lay out the design elements for interactions that
facilitate iterative human-AI co-creation. We also reflect on how
visual sketching interactions can be extended to other story-writing
attributes and domains while supporting reliable steerability even
under the uncertainty of machine learning algorithms. This work
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opens up a way of using visual controls and visualizations to make
iterative human-Al co-creation intuitive and frictionless.

To summarize, our work contributes: 1) A line sketching inter-
action for control and sensemaking of story generation with an
abstract graphical representation of sequential attributes. 2) A GPT-
based controllable language model architecture that generates story
sentences with the sketching input on the protagonist’s fortune. 3)
TaleBrush, a system that enables human-AI story co-creation with
the protagonist’s fortune arc by combining line sketching interac-
tion with GPT-based controllable language model. 4) Reflections on
generalizable design elements of control interaction for iterative
human-AlI co-creation and how line sketching interaction can be
expanded to other generative contexts.

2 RELATED WORK

We review research on four main areas related to TaleBrush: 1)
writing support tools, 2) story generation, 3) visual expressions of
stories, and 4) sketching.

2.1 Writing Support Tools

Many tools support different aspects of writing. These range from
spelling and grammar correction [85, 115], to thesauruses [45],
to crowd-powered editors [11, 108]. As writing tasks and styles
are often domain-specific, tools can be similarly specialized: email
message phrasing [23], help requests in professional contexts [69],
mental support [114], affectionate messaging [80], education [22],
and journalism [95]. Of specific interest to us are tools for creative
writing tasks. These run the gamut from suggesting metaphors [46]
to helping with song lyrics [147]. Commercial tools such as Dramat-
ica or Plottr are largely human-driven and help the author structure
their plot or narrative [19, 43].

To produce content, some tools connect the author to other hu-
mans or support collective story writing by writing stories with
the crowd. These systems can structure creative leadership [77]
and decision-making [78], or even simulate the characters with
crowds [63]. Newer tools have adopted novel machine learning (ML)
and natural language processing (NLP) techniques [153]. Among
those techniques, ML’s generative functions offer a powerful alter-
native approach. These systems append or suggest generated texts
to the writer’s text using sophisticated language models [24, 28, 29,
129, 143]. In theory, these algorithms can act as writing support
tools. However, limited controls and interactions—largely rephras-
ing prompts and contexts—constrain their applicability. Our goal
with TaleBrush is to leverage these language models but provide
an alternative control strategy using both text and abstract visual
representations and interactions.

2.2 Machine Story Generation

Story generation is one of the grand challenges in artificial intelli-
gence (AI) with multiple practical applications. These range from
entertainment [124] and education [98, 124] to our target, writing
support [24, 28]. Early approaches included the use of story block
templates that could be put together sequentially [30]. With compu-
tational techniques, autonomous story generation became feasible.
One technique is computational planning, where the computer does
symbolic planning to accomplish a given goal [86, 101, 113, 125, 146].
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Case-based reasoning techniques enable story generation by adapt-
ing stored stories to new contexts [47, 117, 123, 135, 139]. Alterna-
tive strategies involve character-based simulation, where characters
and the world are simulated to unfold the story with the given facts
and underlying beliefs [25, 94].

Advances in ML, largely in language models, have introduced
more opportunities in story generation [5, 6, 53, 64, 70, 89, 90,
99, 136, 145]. Specifically, Transformer-based Language Models
(LMs) [21, 119, 140] probabilistically sample continuing stories [41]
or infilling sentences [5, 35, 67, 70, 89, 104, 111, 145] based on the
given story context. While imperfect in generating coherent text,
they hold promise for improved story generation.

Controllability is a key requirement for all these approaches.
However, LM models, in particular, utilize structures that are much
harder to inspect and explain. For the algorithms to be useful
and usable, new control mechanisms are needed [28]. The most
basic, and perhaps obvious, controls are driven by natural lan-
guage prompts [36] (e.g., “Tell me a happy story”). To better guide
LMs, researchers investigated ways to automatically learn these
prompts [87, 88, 93, 131]. Other language-based approaches for con-
trol involve specifying keywords to prime the generated text [40,
70, 134, 152]. Alternative approaches, like Intent-Guided Authoring
(IGA), provide some degree of control over output sentences [134].
The author can use a number of pre-specified tags (e.g., cause or
effect) to describe the desired relationship of output to input. Re-
searchers also introduced algorithms that generate stories while
considering the character goals or abilities [3, 136]. Control codes,
such as genre (e.g., is the story fantasy or science fiction?), can also
provide some guidance. Technically, this approach has been enabled
by training models with control codes [54, 75], or manipulating in-
termediate representation layers of LMs [26, 31]. Researchers have
also introduced the approach of first acquiring keywords about the
code, and generating the story based on them [82].

As LMs grow with more parameters, adopting these approaches
became more challenging, as most LM parameters need to be tuned.
To overcome this, researchers train smaller models that guide the
large LMs with control codes [83]. While many approaches apply
the control to the whole story (e.g., ‘the entire story should be
science fiction’), a few approaches demonstrated how different pa-
rameters can be applied to different parts of the story [90, 120, 154].
However, they did not consider the interaction of the user control
generation algorithms. Building on this prior work, we extend both
the technical and interaction sides of controllable story generation.
We designed our story generation model to be controlled with real-
valued sequence inputs from line sketching interaction. There has
been a relevant thread of work called visual story telling [10, 60—
62, 66, 144], that writes stories about visual scenes (e.g., a photo
of a dog running becomes “A dog was chasing down a rabbit”). In
contrast, TaleBrush uses sketches of an abstract attribute of the
story (e.g., the protagonist’s fortune).

2.3 Visualizing and Visually Expressing Stories

To allow users to specify sequential attributes of the story and
capture how texts are generated with controls, TaleBrush adopts
abstract visual representations. Visual techniques have been used to
show high-level attributes of documents [73] and stories (e.g., [17]).
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Digital humanities researchers have used visualizations to under-
stand stories—a form of “distant reading” [71]. Through “distant
reading”, diverse story components can be visualized. These range
from character interactions [12, 15, 72, 110, 151], event progres-
sion [59, 92, 137, 138], character emotions and sentiment [7, 12, 32,
57,107, 121, 127]. As some stories can be non-linear in their telling,
researchers have found ways of representing broader narrative
structures [79, 130]. Our goal is not simply to represent the story
through the visualization but to allow for manipulation through that
representation. However, not all visualization formats are naturally
amenable to direct manipulation (beyond the standard interaction
techniques [155]).

With TaleBrush, we focus on visual encodings that can both
express high-level changes in the story’s progression but also be
manipulable. Kurt Vonnegut’s story arcs fit these requirements.
The arcs were used by Vonnegut to express canonical story types
with diagrams that show how a protagonist’s fortune changed in
the story [142]. For example, in Figure 2, Cinderella’s fortune is
expressed with a curve that rises, drastically falls, and then rises
again. Writers have since leveraged this type of visual expression
to plan out story writing [34, 100, 122]. TaleBrush leverages this
approach to allow for drawing a property, such as fortune, over
time as a way of guiding the generative process.

2.4 Sketching Interactions

To visually express sequential attributes of stories, TaleBrush uses
sketching interaction. Sketching is a flexible and lightweight way
to convey the user’s high-level intentions [38] with its roughness,
uncertainty, and ambiguity [16, 49, 84]. Because of these features,
various sketching tools have been built to embody these charac-
teristics [49] or act as mechanisms to transform rough ideas into
precise representations (e.g., visual renderings [84]). This interac-
tion style has some similarity to TaleBrush, but without the direct
mapping between objects (e.g., draw a cat to get a photorealistic cat).
In the case of TaleBrush, we are creating a sketch in the abstract
time-series space that will generate a corresponding story in the
‘concrete’ text space.

While sketching is most often used in a ‘direct’ way (e.g., drawing
a sketch), it also has been used for constructing examples (e.g., for
image [39, 65] or 3D model search [81, 112]). More relevant to our
approach are tools for sketching time-series ‘queries’ for finding
relevant items in time-series datasets. These can be used to find
everything from fixed patterns [74] to constrained inputs [58, 126]
to free sketches [37, 42, 96, 132, 148, 157]. However, most systems
here assume the existence of matching datasets. In our case, the
dataset does not yet exist. Thus, our approach does not sit cleanly
in the regular taxonomy of visualization interaction [55, 155]. With
TaleBrush, we leverage recent work on interactive visualization
tools for data generation. However, these are largely focused on
numerical approaches rather than text (e.g., generating a dataset
that matches a sketched histogram [97]).

3 SKETCHING SEQUENCE CONTROL

Though narratives may not be linear, stories are inherently formed
in a sequence, progressing from the story beginning to the ending.
Within that sequence, attributes of the story or characters (e.g., the
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Figure 3: More than one story attribute can be expressed
with a) multiple control panels or b) the use of sketching
speed.

protagonist’s fortune) can change. Our goal is to allow the user
to use these attributes to guide the generated sequence. Specifi-
cally, we seek a lightweight mechanism to quickly specify multiple
temporally-varying attributes. In this work, we consider line sketch-
ing interaction as the modality. There are a number of features of
this interaction modality that make the approach appropriate. First,
line sketching in time series visualization can be expressive enough
to convey sequence and attribute information [1, 106]. For exam-
ple, in Figure 2, the sequence can be shown on the x-axis while
expressing the protagonist’s fortune on the y-axis. Second, line
sketches are simple. In Figure 2, the protagonist’s fortune is ex-
pressed just in a single stroke of a line. Though we could build a
similar time series through sliders, text entry of coordinates into a
spreadsheet or clicking on points, a drawn line in a time-series is
lightweight and intuitively understood. This design is well suited
for continuous values (e.g., the fortune level). However, one could
imagine ‘sketching’ discrete/categorical values as well by drawing
disconnected horizontal lines. By default, a simple swipe can allow
the author to indicate the attribute, for how long it should last, and
where in the story it should exist.

While sequence can be expressed in various ways, we choose to
use the familiar linear x position (with attribute values on the y). Lin-
ear positions have been most frequently used to visualize sequence
and it can promote accurate perceptual judgment of time [1, 18].
Rotated (e.g., clock) or spiral-format temporal representations are
also possible [149] but are best suited for representing cycles or
seasonality in temporal data—something uncommon in stories.

In some cases, we may want to express multiple story at-
tributes. For example, the user might want to specify two charac-
ters’ fortunes. In this situation, the multiple time series can either
be sketched within the same x — y space (assuming the scales are
the same) or drawn in multiple spaces (e.g., Figure 3a). To draw
two attributes (along with time) in a single plot is possible but
requires additional encodings. For example, a connected scatterplot
(see [52]) draws the values for the two attributes on the x and y
axes respectively with time encoded using marks on the lines them-
selves (e.g., arrows or graduated thickness) that indicates sequence.
One could also imagine using a feature of the sketching interaction
(e.g., pressure or the time it takes to draw a segment) to encode
values. For example, in Figure 3b, time is displayed on the x-axis,
the value for attribute A on the y-axis and the time used to draw
the stroke (or pressure) to encode the B attribute (visually these can
be encoded using stroke size or color). Drawing speed is naturally
combined with stroked lines and allows for a semantic connection
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between fast-slow drawing speeds, and high-low attribute values.
Additionally, users may have ambiguous perceptions of speed and
time [116]. This might further the idea that the generated story will
only roughly follow the input. Ultimately, this encoding is likely
inappropriate. It still limits us to two attributes and is likely com-
plex and discordant as two similar variables (i.e., attributes A and
B) are created and visualized in two different ways.

A potentially better use of the drawing speed (or pen pressure)
is to convey ambiguity and error-tolerance. In most cases, a
generative algorithm will not be able to generate a sentence that
precisely matches the attribute value. This is due to two factors.
First, is the randomness in the generation (i.e., we may not be
able to generate a sentence with a character’s fortune at exactly
0.58). Second, is the inherent noise in any classifier that judges
attribute values based on the text. By using ‘sketchiness, we are
already conveying some level of ambiguity. However, it would be
ideal to allow the end-user to be able to indicate how accurately
they want the generated sentence to map to their sketch. To allow
this specification, sketch speed or pen pressure may useful. Both
actions have a natural mapping to ‘dropping more ink’ in natural
pen interactions. The size of the sketched line at a particular time
indicates the desired bounds—smaller, indicating more constrained.
Notably, the specific semantics of slower motion can be switched.
Drawing slower can be made to produce ‘more ink’ and therefore
higher tolerance. Conversely, people often draw more slowly when
they want an ‘accurate’ shape. Thus, a slower draw speed can
semantically map to a more ‘accurate’ (i.e., tighter/thinner) line
being drawn.

Though there is a fairly broad design space for sketched input, the
combination of interactive controls, representation effectiveness,
and flexibility seem best addressed through simpler representations:
standard time-series for a single attribute and additional panels for
multiple attributes. However, stroke speed or pressure, represented
as line thickness or color, allows us to encode additional information
such as error-tolerance.

4 TALEBRUSH: INTERFACE

In this section, we motivate our selection of controlled story at-
tributes and explain interactions in TaleBrush’s interface.

4.1 Iterative Co-creation With Line Sketching

TaleBrush is designed to help writers co-create a short storyline
with Al through sketching interactions. TaleBrush supports the
planning stage of the writing process [44, 48] by giving ideas that
can be novel to writers. We chose to support this specific stage, as
writers would likely accept and benefit from diverging generations.
After a story is generated, writers can freely edit it or even try the
generation again to see another story from TaleBrush. TaleBrush
can support writers who would use generated sentences as writing
prompts, or even potentially help them overcome writer’s block.
For novice writers, TaleBrush would demonstrate a story writing
that would allow them to easily jump into writing.

In TaleBrush, writers iterate on the story generation to reach
the desired state. Through our interactive controls, our goal is to
allow writers to reach this state with a small number of iterations.
As introduced in Section 3, sketching controls (green shaded area
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in Figure 1A3 and B2) allow for simple and expressive control inter-
action. TaleBrush visualizes generated stories in the same abstract
visualization (blue line in Figure 1B2). Through this, writers can
more easily understand the relation of their input to the gener-
ated content. We believe that the intuitiveness of these natural
controls and visualizations will ultimately allow writers to more
easily iterate on the story generation.

In our initial implementation, TaleBrush specifically focuses on
two controllable attributes. The first is the level of the protag-
onist’s fortune. This is based on the existing practice of writers
expressing and planning stories based on character or emotional
arcs [34, 150] or more generally on a character’s fortune [142]. Tale-
Brush is designed to allow the control of the protagonist’s fortune
in chronological order. Non-linear narratives, such as flashbacks,
are not currently supported. The user can also specify how tightly
TaleBrush would follow these given fortune parameters at the cost
of generation time. The second attribute is the level of surprise
in the generation, or how unexpected the generation should be.

4.2 Interface

4.2.1 Text Editor and Canvas. TaleBrush has a text editor (Fig-
ure 1A2 and B1) and a canvas for drawing and visualizing the story
arc (Figure 1A3 and B2). The text editor has multiple ‘bullet points’,
each of which stands for a single sequence step, most often a sen-
tence. The writer can add their own sequence sentences or ask
TaleBrush to generate them. As with a standard editor, the writer
can add new sequence sentences (simply by hitting enter), or re-
move them by deleting the bullet point line. TaleBrush will visualize
each bullet point line as a dot in the canvas and sequential dots
will be graphically connected with lines. Thus, there is a correspon-
dence between bullet point order and x position of those sentences
in the visualization. Missing sentences (i.e., blank bullet points) are
reflected with a visual gap. The protagonist’s fortune in a given
sentence is determined by an ML recognition algorithm.

4.2.2  Generate By Sketching. After the writer sketches a charac-
ter’s fortune (as described in Section 3), TaleBrush generates text
for those sentences for “sketched” sentence slots. For example, the
writer can enter one or two sentences, for which the fortune is
calculated and displayed. They can then sketch the rest of the se-
quence. TaleBrush also supports ‘infilling’ the story. For example,
if the writer enters a sentence at the start and end of the sentence
list, this will appear as a broken line in the visualization. The writer
can sketch how they want the story to behave in this empty part
and TaleBrush will create suitable sentences. The writer can also
draw ‘broken’ lines by erasing part of the sketched line. In this
mode, TaleBrush will generate a suitable sentence but without any
specific fortune ‘target.’ This allows writers to explore stories even
when they do not have a specific idea on what the character’s
fortune should do. Once the sketch is drawn, the writer can per-
form generation again with the same parameters by clicking the
“Generate Again” button (Figure 1B3). They can also redraw a line
only on a part of the sequence to see other generated sentences on
the redrawn part. In all cases, the writer also can revise generated
sentences directly in the text editor.
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Figure 4: TaleBrush allows writers to specify the level of ‘sur-
prise’ for each generated sentence. A separate canvas can be
opened where the writer can sketch a thin green line indi-
cating the desired level of surprise. Here, we see a fortune
arc for Mike (top) starting high, going low, and ending high.
A corresponding surprise sketch (bottom) indicates that the
author wanted the first part of the story to be more con-
trolled but the end should be very surprising.

Sketching Speed for Generation Control Tightness. As the con-
trolled generation has uncertainty in how the control would apply,
with the sketching speed, the writer can set how closely generated
sentences should follow the given sketch. With slow sketching,
TaleBrush tries more generations to find the sentence that better
matches the given fortune parameter. In our experience, we found
that the fast — less accurate and slow — more accurate mappings
were easier to understand. The drawn sketch can be perceived as
an ‘envelope’ representing the bounds in which the generated sen-
tences would be more likely to fall (Figure 1A3 and B2). We detail
how the specific width is determined in Section 6. The width of
the sketched line gradually changes visually (i.e., it is not disjoint).
This is more appealing visually. However, the actual envelope is
determined using sentence ‘units. Subtle vertical lines indicated
where these transitions are, thus allowing the user to vary their
drawing speed in each segment.

Surprise Level Control. As we describe below, the specific lan-
guage model we used also allowed us to change parameters that
roughly translated to how ‘surprising’ a sentence would be in the
following prior sentences. For example, with the beginning sen-
tence of “Melissa fought a dragon”, the low surprise may generate
“The dragon was a big, green, scaly beast”, but the high surprise
may result in “Melissa killed a giant robot with a robot dragon”. To
experiment with this feature, we added a “surprise in a separate
panel” control. This would open up another time series canvas
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Figure 5: TaleBrush stores generated stories in a list (A) and
allows writers to compare them on the canvas by visualizing
the fortune arcs of all stored stories in low opacity (B). The
writer can hover over stored stories in the list to see their
text and story arc visualization.

where the writer could draw the desired level of surprise for each
sentence segment (see Figure 4).

4.2.3  Multi-Story Management. As the writer generates multi-
ple stories, TaleBrush stores each. Users can compare and choose
among them (Figure 5). A dropdown menu lists the generated sto-
ries, which will be displayed on the canvas with low opacity. As the
writer moves the mouse over the list, the hovered story is shown in
the text box and highlighted on the canvas. The writer can select
one of these to ‘roll back’ to a past generation.

4.3 Implementation

The interface for TaleBrush is implemented as a web application,
using HTML, CSS, JavaScript, and React. The language model oper-
ations for text generation are implemented in a back-end server. A
Flask-based REST API is used to connect the front- and back-end
sub-systems.

5 TALEBRUSH: TECHNICAL DETAILS

There are two principle technical components to TaleBrush: sen-
tence recognition, which determines a fortune level given an input
sentence; and sentence generation, which creates new sentences.
We begin by explaining our annotated training data, and then cover
each of recognition and generation modules.

5.1 Collecting Fortune of the Protagonist

We adopted crowdsourcing to create an annotated fortune dataset,
as there is no readily available data of this type. We define the
protagonist’s fortune as level of ‘goodness’ or ‘badness’ of the fortune
experienced by the protagonist, as perceived by the readers. This con-
struct is naturally affected by the character’s status, emotional and
physical well-being, or spatial, mental, and emotional proximity to
the character’s goal [34]. While line sketching interaction would
require fortune annotations to be real values, due to the subjectivity
in perceiving this concept, directly collecting real-valued annota-
tions can result in a high variance. As people can make comparisons
reliably on subjective annotations [33, 68], we took the approach
similar to previous work’s [33]: turning crowdsourced comparisons
into real-valued annotations.
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Annotate the story 1. In this story the protagonist is "Alex".:

Sentence 1: Alex had a bag of candy hidden in his drawer.

Sentence 2: He would eat one piece a day in order to make it last.

Sentence 3: After a couple days his bag was almost empty.

Sentence 4: He realized someone else had been eating his candy.

Sentence 5: He spied on his drawer and discovered his best friend was doing it!
Q. Decide the protagonist's level of fortune for sentences in the story.

Annotation (For comparison)

Sent1 Sent2 Sent3 Sent4 Sent5 Calib1 Calib2 Calib3

Calibration sentences:

Calib1l: Eugene woke up in the morning and had a piece of bread as breakfast.

Calib2: Eugene was watching TV while having breakfast, and soon realized that he won the lottery!
Calib3: Eugene ran out of home to get money, but got a car accident, and lost the lottery ticket...

Figure 6: Interface for annotating the protagonist’s fortune
level. The annotator can make comparisons between sen-
tences in the given story. Calibration sentences help for
making comparisons between stories.

We collected fortune annotations on a subset of the ROCStories
dataset [105]. Items in this dataset are short five-sentence stories.
We randomly sampled 2200 stories, using 2000 for training and 200
as a test set. We assigned three annotators for each story. During
data collection, we explicitly specified the protagonist of the story.
Annotators were asked to specify the level of the protagonist’s for-
tune for each sentence using a continuous slider (Figure 6). While
this annotation approach is mainly designed to collect real-valued
annotations, the interface also enables annotators to encode com-
parisons between sentences. Workers were not explicitly asked to
compare sentences between different stories. However, they were
asked to annotate using the “calibrating sentences” as benchmarks.
One of the authors crafted these calibrating sentences from a three-
sentence story to ensure a unique, single-sentence example for
three fortune ‘types’: good, bad, and neutral. Our annotators were
asked to label these calibrating sentences at the start of the task
and could see them as they worked (see Figure 6).

To ensure high annotation quality, we included one gold stan-
dard question with sentences of obvious good and bad fortunes. We
filtered out workers who annotated such questions in opposite for-
tune directions. We recruited annotators from Amazon Mechanical
Turk, who are in the US and had 97% acceptance rate with 1000 or
more accepted tasks. Each worker was asked to annotate 11 stories
including the calibrating story and was paid $2.50 (about $10/hr
payment rate).

To learn the reliability of annotations, we analyzed agreements
between pairs of annotators. We measured Spearman’s p in rank-
ing five sentences in a story according to the fortune level (i.e.,
with perfect agreement p = 1 or —1 with perfect disagreement).
The average and median of p values between pairs were 0.54 and
0.7, respectively. Though clearly imperfect, annotators did display
agreement in their annotations.
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To turn comparisons into real-valued labels, we used the TrueSkill
algorithm [33, 56, 102]. The algorithm can calculate the real-valued
fortune score of each sentence out of all comparisons from our
crowdsourced annotations. While this algorithm is originally de-
signed to infer rankings of game players out of all individual game
results, like who won or lost, we adapted it to get rankings of
fortunes out of all comparison annotations. With this algorithm,
sentences frequently annotated to have a higher fortune than other
sentences would have a high fortune ranking. We normalized this
ranking information to have a uniformly distributed dataset on the
scale of 0 to 1 and used the resulting annotations.

5.2 Technical Architecture

A high level architecture for the recognition and generation ele-
ments of TaleBrush is depicted in Figure 7.

5.2.1 Recognition Module. TaleBrush recognizes the protagonist’s
fortune to map sentences in the visualization. To match the training
dataset for the recognition and controlled generation, we trained
our own recognition model. Specifically, we use prompting ap-
proaches of GPT-based models [21, 119]. For instance, to recognize
the protagonist’s fortune, to the model, we can input the prompt “Es-
timate fortune:” with the subject sentence appended to it. However,
hand-designing optimal prompts is known to be challenging [87, 93].
Hence, we used the soft prompt approach [87, 88, 93], which learns
these prompts on the continuous input embedding space. These
soft prompts replace “discrete” natural language prompts. In other
words, we can replace “Estimate fortune:” with several learnable soft
prompt embeddings. We took the soft prompt tuning approach [87]
instead of fine-tuning the whole parameters of the LM, as trained
soft prompts require less memory (about x10° less size than the
whole parameters). Fine-tuning multiple whole-parameter models
for multiple tasks (e.g., generation), would require significantly
more computation resources.

We trained the soft prompts to minimize the regression loss
on the protagonist’s fortune label of an estimated sentence. As a
language model, we used a GPT-Neo [13], which is a GPT-based
auto-regressive model [21, 119] with 2.7 billion parameters. We
included the context sentences previous to the target sentence in
the input data, as they can have critical information. This previous
context includes, at maximum, three sentences. We picked three
as it had the smallest loss in the test dataset. We also included the
protagonist’s name in the context. The input and output labels are
formatted as follows:

e Input: [lemw], - [P;,’rw], (previous context), [P1 1], .., [P, ],

prot prot
(protagonist), [Ptlar], ..., [P1,], (target sentence)
e Label: y € [0,1]

[P!] stands for the placeholder for soft prompt embeddings, with
r and i indicating the role and the index of soft prompts, respectively.
For each prompt role, we chose three prompt tokens (n = 3) which
fit with that of initialization prompts we used (‘Previous Context:’
for Pprey, Protagonist:” for Ppror, and ‘Sentence:” for Prgr). With

trained prompts, we could recognize the protagonist’s fortune, as
demonstrated on Cinderella in Figure 8.

5.2.2  Generation Module. Our goal is for TaleBrush’s generation to
be steerable with a sequence of fortune values. For this, we modified
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Context: Protagonist, previous sentences

GPT2-medium)
FAR AR
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B. Controlled generation with modified GeDi

Continuous control code (sketch): Interpolated from 3-class code

(bad, neutral, good)

Context: Protagonist, previous sentences for continuation,
previous and next sentences for infilling

Figure 7: The technical architecture of TaleBrush. To serve recognition and generation, the prompts of a Base-LM are tuned.
These prompts are used interchangeably for a single LM. For fortune recognition, context, prompt embeddings, and target
sentence are given as inputs and the fortune level is predicted as a real value between 0 and 1. For controlled generation with
the fortune sketch, a modified version of GeDi is used. GeDi is a fine-tuned model that steers the generation according to
real-valued fortune input, or continuous control code. Context and prompt embeddings are also used as input. For a sentence
to be generated, the y-position of a point in a sketch is used as a continuous control code. This continuous control code has a
value between 0 and 1 and its input embedding is interpolated with three class codes (bad for 0, neutral for 0.5, and good for
1) before being input into the modified GeDi. Base-LM used GPT-Neo while the modified GeDi used GPT2-medium.

Cinderella

Cinderella | 's fortune

>Cinderella lost her mother when she was young and her father
got remarried.

>The stepmother and two stepsisters were not good people and
mistreated making her do all the chores.

>One day, out of chance, Cinderella meets the Prince in the forest.
>She got an invitation to go to the royal ball ceremony.

>With the fairy godmother's help, she could go there in a
fascinating dress and dance with the prince.

>However, all the things, the carriage, driver, horse, dress were all
magic and they would disappear when the clock struck midnight.
>Cinderella hurried to leave the palace before it becomes
midnight, but unfortunately, she lost her slippers.

>Prince eventually found her with the lost slippers, and Prince and
Cinderella got married.

>They live happily ever after.

Figure 8: How the protagonist’s fortune is recognized in the
summary of Cinderella. The visualized recognition results
are similar to Vonnegut’s original (Figure 2).

the approach used in GeDi [83], which uses a fine-tuned smaller
model to guide a bigger language model with a control input. In
order to explain the details of our GeDi variant, we first describe
how generation can be done with LMs. Then, we describe our base
LM that serves story generation tasks and GeDi model that steers
stories with the control code.

Generation with Language Model. When an auto-regressive LM
receives a sequence of tokens (x;.7 = {x1,...,x7}), it calculates
the probabilities for the next tokens with a chain rule (Pg(x1.7) =
I—[tT:1 Py (x¢|x<t)). With this probability, we can sample out the next
likely token. By inputting the sampled token back into the LM, we

can also calculate the probability for the token that comes after the
lastly sampled token.

Base Language Model for Story Generation. As a base LM for
language generation, TaleBrush uses the same GPT-Neo the recog-
nition module uses. However, different soft prompt embeddings
are trained for the generation tasks. The benefit is that one large
pre-trained LM can be utilized for different tasks just by replacing
prompts and contexts according to the task purpose. We trained
soft prompts for story continuation and infilling. For continuation
(Figure 9a), the previous context and protagonist are fed into the
language model as input and the model generates the continuing
sentences. We appended the character information as models with-
out character information tend to introduce random characters. We
placed the character information right before the text to be gener-
ated, to make it more likely that character information is considered
during the continuing generation. Accordingly, the input data is
formulated as the following:

e Continuation: [P;l;reu]) [P[’,’rev], (previous context), [P}

prot]’ )
[P5rot ) (protagonist), (Plone] o [P0

Similar to recognition prompts, we chose the number of prompts
that matches the initializing prompt (n = 3 with ‘Beginning Story:’
for Pprey, ‘Story Character:” for Ppror, and ‘Continue Story:’for
P cont)~

For infilling (Figure 9b and c), we included both the previous and
next contexts and the protagonist as the model input. We trained
two types of prompts for infilling: one for filling after the previous
context, and the other for filling backward from the next context.
When running infilling generation, these two prompts are used in
turn, switching from one to the other for every generated infilling
sentence. For infilling from the previous, we placed the previous
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Story Generation Task Input to GPT-Neo
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sentence
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) Previous Infill from the R Next
context next context

Prompts for . INIERIEEYIEN Previous Prompts for next
. Protagonist s
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context context context infilling sentence
Next Prompts for Infilling story
sentence

Figure 9: TaleBrush performs three story generation tasks: a) continuation, b) infill from previous, and c) infill from next.
For different generation tasks, how contexts and prompts are structured for inputs differs. In Input to GPT-Neo, dark boxes
indicate continuous prompts. In Generated, red text stand for generated sentences.

context right before the text to be generated, as the generated text
will be appended right next to the previous context. With a similar
rationale, for infilling from next, we placed the next context right
before the text to be generated. We placed protagonist information
at the front-most prompt, as infilling tend to digress less with the
protagonist compared to continuation. This likely occurs as the
protagonist is mentioned in both the ‘previous’ and ‘next’ contexts.

The input data for infilling was formulated as follows:

o Infilling from the previous: [P;,r ot)s s [P[’,'mt], (protagonist),
[Prlth], wor [Py ], (next context), [P;,ev], - [P;},eu], (previous
context) [Pilnfill]’ s [Pi'izfill]

o Infilling from the next: [P;mt], s [Pl’)‘mt], (protagonist), [P},,ev],

o [P;,’rw], (previous context), [Prllext], coor [Pt

], (next context)

[Pilnfill]’ s [Ph i)

We chose the number of prompts according to that of the initial-
izing prompt. (n = 3 with ‘Story Character:” for Ppyo¢, ‘Beginning
Story:’ for Pprey, and ‘Ending Story:” for Puext, and n = 4 with
‘Infilled Story: for Py, 1)

Controlling Generation with GeDi. TaleBrush adopts the GeDi
approach. This model guides an LM model (base LM) with a smaller
Class-conditional LM (CC-LM) that is fine-tuned to generate using
a user-specified control code (e.g., generate a happy story with the
control code of “good”). Similar to standard LMs, CC-LM calculates
the probability of the next token given a sequence of tokens. How-
ever, it also considers a specific control code (c) given to the CC-LM
(Po(x1.7lc) = ]_[z;l Py (xt|x<z,)). With CC-LM’s probabilities for
different codes and the Bayes rule, we also can calculate the prob-
ability of each sequence of tokens being classified into a control
code:

P(c)P (xy:¢]c)*/!
Xee {c,E}P(C,)PQ (x1:t|c/)a/t !
where « is a learnable scale parameter and ¢ is codes other than the
selected one. This probability can be combined with that of base

LMs, to decide which token would lead to the coherent story that
follows the control code:

P9(0|x1:t) = (1)

Py (x¢|x<t, ) o Prap(xelx<e)Po(clxe, x<i)® @)
Note that o serves as a parameter that decides how much steering
will be done with GeDi (higher — more steering). GeDi is faster
than other control approaches that directly manipulate weights [31]

control codes for  tokens embeddings
extreme classes
m good embeddinggood
(0.5) neutral embedding embeddingneutrai
(0) bad embeddingbad

interpolated embeddings
control codes

(0.75) embeddinggecd (1) X 0.5 +embeddingrneutrar (0.5) X 0.5

(0.25) embeddingneura(0.5) X 0.5 +embeddingsaed (0) X 0.5

Figure 10: An approach to turn continuous control codes
into embeddings that can be input to CC-LM. For three ex-
treme classes (1, 0.5, 0), we use embeddings of the tokens,
good, neutral, and bad, respectively. For other control codes,
we interpolated the embeddings of these extreme classes.

or that filter from many generated texts. Thus it is better suited for
interactive applications.

Modified GeDi for Continuous-Value Control. We modified GeDi
to control generation with continuous-valued control codes. To
enable continuous control between good and bad fortunes, we in-
terpolated between extreme fortune classes. We first trained CC-LM
with three topic classes, each mapping to extremely bad fortune,
neutral fortune, and extremely good fortune. When training the CC-
LM with these three classes, we took the multi-class topic control
approach introduced in GeDi [83]. With this approach, the given
“main” codes are true and false, while three classes of bad, neutral,
and good are given as the secondary codes. When given true, CC-
LM trains to generate texts according to the given secondary code,
and with false, CC-LM would not follow the secondary code. We
adopted this multi-class topic control approach as it has benefit in
computation time, with fewer “main” control codes to be computed
to get the probability from Equation 1. We also included the pro-
tagonist’s name at the beginning of the input as contexts. A part of
training dataset might look like:

e <true> <good> Protagonist: Mark # Mark was happy to pass

the exam that he wanted to pass.
o <false> <bad> Protagonist: Mark # Mark was happy to pass

the exam that he wanted to pass.
For the training data, we used only some of the annotations from
our collection: those in the top, middle, and bottom 10% percentile.
That is, we mapped ranges of values to three discrete classes to
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assure we have enough training data. To train this CC-LM, we
fine-tuned the GPT2-medium model. After the CC-LM is trained,
when an arbitrary value between 0 and 1 is used as a code, we
interpolate embeddings between three discrete classes considering
each of them as having 0, 0.5, and 1 (Figure 10). Then, we used
the interpolated embedding as the input embedding. For example,
when the control code is 0.25 (halfway between the bad and neutral
fortunes), we calcualted the weighted sum of the the learned bad
and neutral embeddings with the weight of 0.5 each.

While GeDi steers the generation with the protagonist’s fortune,
it can potentially make errors, producing sentences outside of the
desired fortune level. To handle these errors, we adopted the ap-
proach of regenerating sentences if they were significantly out of
the range of the specified code. Specifically, TaleBrush'’s recognition
module measures the generated sentence’s level of fortune, and
if it disagrees with the control value, TaleBrush tries to generate
again. We set the threshold of error for regeneration as 0.2 (i.e.,
|y — g| > 0.2). TaleBrush tries to regenerate the text 1-2 more times.
Again, this is based on the desired ‘closeness’ of the generated for-
tune to the writer’s intent (as expressed by the speed of the writer’s
drawn stroke). After the maximum number of regeneration has
been tried, TaleBrush picks the generated sentence that has minimal
fortune level error with the given control value. The surprise level
control value is used as the temperature of the softmax function of
the base language model. To implement our architecture, we used
models from Huggingface!?.

6 TECHNICAL EVALUATION

We conducted technical evaluations on the recognition and gen-
eration modules. For recognition, we measured how accurately a
character’s fortune is recognized in a sentence. For the generation
module, we focused on how controllability impacts other qualities
of the story. Controllability is known to have trade-offs with some
story qualities like coherence [90]. Ideally, our control approach
would allow the writer to steer the generation without hurting
other metrics. We conducted three evaluations: 1) recognition per-
formance, 2) an automated evaluation on generation, to find the
parameter that can achieve the ‘sweet spot’ between controllability
and coherence, and 3) human evaluation on generation, to show
that our approach allows controllability while maintaining other
story qualities.

6.1 Fortune Recognition Evaluation

To evaluate the recognition module, we focused on recognition
error, the difference between the recognized fortune value and the
gold standard labels. This was done on the 200 annotated examples
reserved for testing. The mean and median errors were 0.179 and
0.159 respectively on a 0 to 1 scale. We considered this result to
be reliable. Concepts similar to fortune, such as sentiment, are
usually measured through an ordinal five-level scale. Human raters
can easily discern concepts with this number of levels [133]. If
we view the five levels on a 0 to 1 scale, with the assumption of
the uniform interval between levels (which is widely adopted in

!https://huggingface.co/
2Code for TaleBrush is shared in https://johnr0.github.io/publications/TaleBrush_
CHI2022.
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ML [133, 156]), then the gap between levels will be 0.25. Our average
error (.179) is below this 0.25 gap so most differences would not be
easily discernible.

6.2 Automated Generation Evaluation

We conducted the automated evaluation to identify the parameter
that balances coherence and controllability. Here, the parameter of
interest is w: how intensely the steering control is applied. Past work
has demonstrated that a higher o value leads to better controllabil-
ity, but worse coherence [90]. As we modified the GeDi approach
to our context, we reinvestigated how « impacts coherence and
controllability.

For coherence, we calculated perplexity, which is a measure
of how well a probability model predicts to generate a sequence
of text tokens [20]. To evaluate the controllability, we measured
the control difference: the difference between an input fortune
value and the estimated fortune level of the text generated. To
estimate the fortune level of generated text, we used our fortune
recognition module. We measured these two metrics with our 200
test data points. For the continuation task, we considered the first
sentence as the initial context and generated four more sentences.
For infilling, we considered the first and the last sentences as the
initial context and generated middle three more sentences. For the
controlled generation, we gave fortune annotations in our test data
as control values and measured perplexity and control difference,
while varying « value. Recall that we allow for ‘regenerating’ the
text up to two times to improve the generated text’s fit to the
desired fortune (selecting the best of the generated options). We
also simulated this regeneration up to two times to determine the
impact of this on our metrics.

With controlled continuation (Figure 11a), the perplexity tends
to increase with the increase of . The increases in median and 25t
percentile were relatively stable compared to that of 75 h percentile.
The control difference tended to decrease very slightly with the
increase of w. The regeneration approach tends to decrease not
only the median of control differences but also the 75 h percentile
of control difference by a large amount. Regenerating once (two
stories to pick from) resulted in a 30%-40% increase in generation
time, while regenerating twice (three stories) resulted in a 50%-
60% increase. The rate of performing regeneration decreased very
slightly with the increase of w.

With infilling, the change of w did not change perplexity much
(Figure 11b). This might be because infilling considers both be-
ginning and end contexts, and would diverge less from the gold
standard sentences. On the other hand, for continuation, as there
is no end context to consider, the generated text can diverge sig-
nificantly from the gold standard sentences. The control difference
and regeneration rate did not have a discernible trend with changes
to w. Without regeneration, the control difference of infilling was
larger than that of continuation. Similar to continuation generation,
the addition of regeneration leads to decreased control difference.
The rate of regeneration was 40%-50% when regenerated once and
50%-65% when regenerated twice, which was higher than those of
the continuation.

From the results, we find that a small w value did not hurt con-
trollability much. Moreover, a low w value assured low perplexity
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Figure 11: Automated evaluation results on controlled story a) continuation and b) infilling. Median of perplexity and control
difference (between given control value and output fortune) are plotted for the range between 25! and 75'" percentile. In the
regeneration condition, we measured the rate of sentences that were regenerated to minimize control difference. The x-axis

is presented in log-scale.

in continuation tasks. If regenerating once, the control difference
decrease at a cost of 30%-50% more generation time. Considering
the findings, in TaleBrush, we use w value of 1 and try regeneration
once as a baseline. Recall that we still limit regeneration to at most
twice based on the writer’s input. While additional regeneration
may improve the results, the response time costs may be too high
for an interactive application with the current architecture.

6.3 Human Evaluation on Generation

In addition to the automated test, we conducted a human eval-
uation to see if stories generated by TaleBrush are perceived as
coherent, novel, and controlled. For controllability, we showed eval-
uators two sentences generated with two different fortune levels
and asked them to decide in which sentence the protagonist has a
better fortune. Evaluators were not shown the input fortune values.
If an evaluator chose the sentence generated with a higher fortune
control value, we considered the answer correct. All fortune val-
ues in the human evaluation were randomly sampled. However,
in the controllability study, we excluded control values that were
too similar (a difference smaller than 0.25), as such similar controls
would be even difficult for humans to differentiate. We decided this
threshold as 0.25 as fortune level differences larger than this value
would be discernible to evaluators (i.e., five-level Likert scales are
frequently used for sentiment annotation). We additionally investi-
gated the novelty of generated texts as TaleBrush is designed to aid
story ideation. We showed evaluators two versions of generated
stories: one ‘with’ controls (i.e., using the GeDi model and char-
acter fortune values); and the other without controls (only with
the prompt-tuned GPT-Neo model). We asked the evaluators to
decide which story was more coherent or novel. For coherence, we
specifically asked: 1) if story flow is coherent (story coherence) and
2) if sentences are grammatically coherent (grammaticality). While
there can be more specific incoherent patterns [50], we chose story
coherence and grammaticality as they each can tell us about the
global and local coherence of the story. Evaluators could choose
one of the generated stories with better coherence or novelty (CX
for “without controls” and CO for “with controls” in Figure 12), or
decide that they are similar in quality (S in Figure 12). Evaluators
were not aware of which story is generated with fortune controls.
For each criterion, we evaluated 100 story pairs, 50 for continua-
tion and the other 50 for infilling. When generating these stories,
we applied the regeneration strategy once and used w = 1. We

hired crowd workers as evaluators, as we wanted to know if even
non-experts in story writing perceive TaleBrush’s generations as
coherent, controlled, and novel. For each assessment question, we
assigned three crowd workers to assure reliable evaluation. We
recruited crowd workers from Amazon Mechanical Turk, who are
in the US, with acceptance rates higher than 97% and more than
1000 tasks accepted. Each worker evaluated one criterion, for eleven
pairs of stories including one gold standard question. We paid them
$3, which is over a $10/hr payment rate.

Figure 12 summarizes our results. Evaluators recognized which
sentence is generated with a higher fortune control value 88.0% of
time for continuation (84.7% for infilling). Stories generated without
fortune controls (CX) were chosen most frequently to have better
story coherence and grammaticality. In continuation, their ratio
was below 50% (45.3% and 46.0% for story coherence and grammati-
cality, respectively). That is, when using continuation with fortune
controls, in more than half of cases, users would observe stories
with similar (S) or better (CO) story coherence and grammaticality
compared to those generated without controls. With infilling algo-
rithms, similar to continuation, stories generated without controls
(CX) showed better story coherence and grammaticality most fre-
quently, but their frequencies were higher than continuation (62.7%
and 76.7% for story coherence and grammaticality, respectively).
One potential reason for this result might be the fundamental diffi-
culty in generating coherent infilling stories when a given fortune
sequence is not plausible (e.g., drastic fluctuation in fortune). For
novelty, with continuation algorithm, different conditions showed
similar performances. With the infilling algorithm, stories gen-
erated with controls (CO) are perceived to be more novel more
frequently. In summary, we found that novelty is not hurt with
fortune controls. We also find that our control approach can steer
the generation according to the control value, but at some cost
to story coherence and grammaticality. The cost is lower in the
continuation algorithm than in infilling one. Regardless of the strat-
egy, no generative algorithm can generate perfect coherence or
grammaticality. Thus, it is critical to ensure that the writer can edit
the final text.

7 USER STUDY

We conducted a user study to gain insights and feedback on the
potential, limitations, and future opportunities of sketching inter-
actions for iterative human-AlI story co-creation. We focused on
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Figure 12: Human technical evaluation results on a) continuing and b) infilling generation. For controllability, the accuracy
(A) in estimating which sentence is generated with a higher control value is reported. For coherence, grammaticality, and
novelty, the ratio of evaluators choosing which condition has better quality is reported (CX for generation without controls,

S for quality being similar, and CO for generation with controls).

learning how our novel sketching control facilitates iterative ex-
ploration of story ideas and story co-creation. As this study seeks
to understand how users leveraged our novel interactions, we did
not conduct a formal comparison to existing human-AlI story co-
creation tools.

7.1 Participants

We recruited 14 participants (7 female and 7 male) by word-of-
mouth and through online advertisements on social media and
communities of universities. Participants completed a pre-survey
on their background before the study. Our participants had a range
of expertise: novices, hobbyists, and experts. We classified partici-
pants who do not write stories occasionally as novices. Others were
classified as either hobbyists or experts, and experts considered
themselves as story-writing professionals. Participants were fluent
in using English. We detailed participants in Table 1.

7.2 Procedure

We conducted a remote study with Zoom?. Participants were first
given an overview of the study (15 min), then went through a
tutorial on the tool (15 min). Participants could access TaleBrush
directly through a URL we shared. In the tutorial, we explained that
better fortune was represented with higher points on the y-axis.
However, we allowed participants to use the tool to specifically
learn how the mapping worked as there are no explicit axis labels.
After the tutorial, we asked participants to use TaleBrush in two
tasks. First, they were given a specific story beginning and were
asked to generate a continuing story with TaleBrush until they
found one that appealed as a draft story. After participants picked
this draft story, they were asked to edit the text directly without
additional generation (20 min). This task allowed us to observe
how participants drew fortune arcs and which of the generated
elements they retained or modified. For the second task, we asked
participants to freely use the tool, bringing in their own story from
the very beginning (20 min). We did not restrict how and when they
used generation. Whereas the first task roughly corresponded to
one ‘turn’ (machine then human), the second allowed us to observe
an iterative co-creation process. In both tasks, we asked participants
to share the screen of the interface. We also asked participants to
think aloud while using TaleBrush to learn their rationales and
reactions in using the tool. Lastly, we conducted a short interview,
asking the experience of using TaleBrush, such as how they used

3https://zoom.us/

the line sketching, how they incorporated stories generated by the
tool, and how they would adopt TaleBrush to their practice (20
min). The whole session was video-recorded.

7.3 Results

We qualitatively analyzed screen recordings, think-aloud state-
ments, and interviews. One of the authors analyzed data by iterative
coding with inductive analysis, and coded results were reviewed
with two other authors. Note that unless explicitly stated, results
are about the participants across all expertise levels.

7.3.1  Use of Line Sketches.

Line sketching facilitates iterative co-creation with intuitive con-
trols. Overall, participants indicated that line sketching was a sim-
ple and expressive way to specify the protagonist’s fortune. As
critically, they understood how to use sketching to steer text gen-
eration. Participants also thought that fortune was an effective
attribute to control the overall story flow. During the study, writers
experimented and iterated on multiple line sketches. Some tried gen-
eration on a sub-part of the story to only change that part. Others
tried generation in the middle of editing the story. For example, P6
repetitively tried generation to find infilling sentences that would
go along well with the ending sentence previously generated from
TaleBrush. During the process, P6 also edited generated sentences
and used them as the context for the next generation. Participants
also mentioned that sketching allowed them to specify the arc with-
out the pressure of being precise. For example, P6 mentioned: “If T
should have input each number, I might have been more reluctant to
complete the story. Because they are specifying more detailed values.
So, I think drawing would be more helpful in generating the stories.”

Surprise control and controllability in small changes could be im-
proved. A few participants used the surprise control, but the per-
ceived effectiveness diverged between participants. Additionally,
when participants used sketching for small and detailed fortune
changes, they felt that their control was not reflected well on the
generation. The feature of specifying control fidelity with sketching
speed might have been one approach to solve this problem, but it
was not effective enough in some cases. Participants speculated
that the feeling of lack of control might be due to disagreement
between their perception of fortune and the fortune level calculated
by TaleBrush. The current generation approach of replacing the
whole sentence may have also exacerbated this problem, as the
user expected a slight change in the text when they are making
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Table 1: Participants of the user study. Their domain of interest and years of experience in story writing is shown.

Expertise Domain Year | Expertise Domain Year
Novice P1-5 | N/A N/A | Hobbyist | P10 | Fantasy 2
P6 Play script 2 P11 | Sci-fi feature films 50
. P7 Time travel story 3 P12 | Literary/Psychological fiction 15
H E
obbyist P8 Sports story 0.5 xpert P13 | Fiction, Fantasy 4
P9 Hard SF, Dungeon & Dragon 3 P14 | User/Personal/Fictional stories 8
a) Text edits b) Fortune vis before edit. c) Fortune vis after edit.
1. > Chris likes to swim in the pool during

2. > One day he tried to dive into the new swimming pool that he found on his way home.

3. > He panicked, but managed to get his hands on one of the diving boards and was able to make-i dive in with a beautiful posture!

4. > Befere-teng-Ghris Because Chris did not prepare a swmmmg SUII he got soaked but he didn't care

5. > Hours later they he found out that someone else had & e

4 thoro £or by

stolen his bag, while he was busy enjoylng the new swimming pool.

6. > Fh el +schook-Ch H-of-fip-fi he-bouaht-at-alocalsh h IRPONN

)

4

Ty
turehtire: Even though he Iost his bag, he was still happy that he found a new swimming pool for him to visit on his way back home.

7.>He walked home W|th Styte happmess'

8. > Fh e o-pitt Ketp-Chi 4 readv-t
mother was worried lhat hls son was soaked i |n water and lost his bag

9. + However, when she saw his smile, she was relieved

partyt When he arrived home, his

Figure 13: P2’s work: a) Edit of a generated story. Bolded, red, and blue text indicates initial context input, removed parts, and
added texts, respectively. b) Line sketch and fortune arc of the generated story before editing. c) Fortune arc of the edited story.

small changes in the sketch. While the new sentence may be at the
appropriate fortune level, the content may have been too radically
different from the sentence at that time point.

Line sketching facilitated the planning of writing to some par-
ticipants. Within the iterative co-creation process, the line sketch
could also influence participants to edit the story to follow the
sketched fortune arc. For example, in Figure 13, P2 edited generated
text to follow the line sketch that P2 drew in most sentences (from
b to c). Because the current story was constantly compared to the
drawn sketch, the participant would try to adjust the story so that
it was more aligned with the sketch. Participants also mentioned
that the sketch served as a plan or a guideline. For example, P7
mentioned: “As I draw graphs, it is intuitive, I could easily see how I
would compose the storyline and how I should structure it.” However,
some participants who deeply focused on the story itself did not
consider the sketch when editing the text.

7.3.2  Use of Generated Texts.

Generated texts are used as ideation materials. From the automat-
ically generated stories, participants adopted characters, settings,
short expressions, sentences, events, or even the overall story flow.
For example, in Figure 13a, P2 liked the event described in the third
sentence and edited the story to go along with the sentence. Novice
participants mentioned that generated texts lowered the barrier on
starting writing, as they would have more frustration if they start
from a blank paper.

Incoherent generations are targets for revision. Unsurprisingly,
participants frequently revised incoherent parts. For example, the
sixth sentence of Figure 13a was taken off because mentioning
flip-flops was perceived as a drastic context change. Participants
also added more details to the story to make it more reasonable and
concrete. For example, in Figure 13a, P2 added details on the ‘pool’
in the second sentence that it is a new swimming pool on the way

to the protagonist’s home. Participants also added new sentences to
make the story flow natural. For instance, in Figure 13a, P2 added
the last sentence to make the ending more natural. Interestingly,
the editing pattern of novices, hobbyists, and experts did not differ
much, potentially due to the novelty of the tool’s functionality to
participants.

Incoherent generations serve as the reason to exert creativity for
some participants. While incoherent or ambiguous story elements
require participants to revise sentences, some participants appre-
ciated this as a ‘prompt’ to apply their own creativity and revise
the text. For example, P1 mentioned: “If; there is nothing like that
[incoherence], I would not do something creative. However, with some-
thing that needs to be fixed, and if you kind of get that they need to be
revised, I feel like I can exert my creativity... So I don’t think these are
downsides.” Moreover, some ‘incoherence’ was perceived as novel
elements to participants. This ‘bug’ thus becomes a ‘feature’ in the
context of ideation support.

7.3.3  Potential of TaleBrush in practice and suggestions for improve-
ments.

Potential for quick and iterative ideation. Experts and hobbyists
mentioned that they would use TaleBrush to quickly iterate through
diverse ideas. Collected ideas can be used in the ideation stage or
to overcome writer’s block. This benefit would be maximized in
settings where the writer should bring up multiple stories, such as
tabletop role-playing games.

Supporting more attributes, longer texts, and various types of writ-
ings. Participants mentioned that they would like to see controls
for more story attributes, such as other characters’ fortunes, set-
tings, or genres. They reasoned that more controls would likely
lead to a more desired text that they would adopt to theirs. Some
participants indicated that the visualization and control granular-
ity might need to change if TaleBrush expands to generate longer
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texts, as users would want to give paragraph-level or chapter-level
specifications. Experts noted that TaleBrush needs to be adapted to
each usage context. For example, P11, a screenwriter, stated that
the tool should be able to express character emotions or states only
with observational statements, as those need to be shown, not told,
in screen writings. Finally, participants mentioned the potential of
using sketching to control generation of texts other than stories,
such as controlling tone in speech or editorials.

Addressing bias. Potential bias in the story generation and con-
trol was brought up as an issue. For example, P5 perceived that the
algorithm generates stories that are more likely written in west-
ern culture. P10 mentioned that the controlled generation did not
align with what they expected when the protagonist is an anti-hero,
signaling potential bias. An important starting point would be in
ensuring a more diverse training set, as is broader testing.

8 DISCUSSION

While TaleBrush is currently focused on character fortune, we
reflect lessons learned for control design and for iterative human-
Al co-creation.

8.1 The Gulf of Human-AI Co-Creation

Our design for interactive controls addresses challenges in the
gulf of execution and evaluation [109] between the user and the
generative Al systems. A key feature is reducing the friction in
the iterative co-creation process. First, the control interaction of
TaleBrush is designed to be expressive and easy. These are often
conflicting goals: simple interfaces have limited expressiveness and
expressive interfaces are not simple. However, this balance is clearly
needed for closing the gulf of execution but is missing in many
existing interactive approaches to co-creation. Second, to minimize
the gulf of evaluation, sensemaking of generated results should be
facilitated. Users should be able to more easily understand how the
given controls relate to what the Al generated. This is often missed
in ‘explainable’ Al approaches. The explanation does not map to
either the user’s intent or how they interface with the software.

8.2 Generalizing Line Sketching Control

Beyond story generation, line sketching can potentially be adopted
for other applications that generate content with sequence at-
tributes. This is particularly true in domains where we can op-
erationalize and encode features of the content as drawings. For
example, poetry [14] and lyrics [147] can be visualized based on
moods or rhythms. One indicator of whether the line sketching
approach is appropriate for a generative context is if time-series
style visualizations already exist in that medium. For example, in
audio, we can visualize (and partially control) changes in volume
over time. This can be extended to support more powerful types of
guidance. For example, a composer could control rhythmic density
or melodic contour [2] of generated outputs. Similarly, a sketch line
could be used with a text-to-speech generator for flexible micro
expression control (e.g., pace or aggressiveness) [128].
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8.3 Disagreement Between Human and Al

In our experiments, we found situations in which the controlled
generation do not satisfy a user’s expectation, and the generated
text’s fortune level might not accord with the given controls. This
can be due to algorithmic error, either from the controlled gener-
ation or recognition. However, we found that in some cases this
was a result of an implausible request (e.g., drastic fluctuation of
fortune). Dramatic fluctuations are not often observed in real text
and the generative algorithms may not be able to generate suitable
text. To address this, we might limit how much the sketch can move
between time steps (e.g., a smoothing). Alternatively, we can lever-
age the ambiguity and undetermined nature of sketching [49, 84]
to communicate uncertainty in control. In our prototype, as the
user sketches, we show a wide range where the generated output
would likely fall. While these design elements manage user expec-
tations on the tightness of the control, our user study found that
users would want more sensitive controls when they iterate over
generations with small changes in parameters. The sketch-speed
approach is one way to allow users to encode how ‘tightly’ they
want the story to fit. However, it may be worth considering alter-
native approaches in the future (e.g., explicitly selecting different
‘pen’ widths or experimenting with things like pen pressure).

As our user study revealed, the writer’s perception of the protag-
onist’s fortune can also be misaligned with how the tool recognizes
it. Adapting the machine’s fortune scale to the user’s perception can
be a way to solve this. For example, we can allow users to revise the
machine recognition results based on their perception of the text
(e.g., by moving the line the machine drew). This can be fed back to
the underlying classifier to learn the user’s scale of fortune. To en-
able such interactions with low user effort, it should be technically
possible to adjust models with few data instances from the user.
Recent language model tuning approaches, including soft prompt
tuning [87, 93], may support this approach. In some situations, the
user’s expectation may be mismatched due to the potential bias
in the model or training data. For example, our study participants
mentioned the model seemed to show biased behaviors, such as
generating stories more likely written in western cultures, which
might be due to skewed distribution in the variety of stories [9]. To
alleviate this problem, we can try pretraining big language models
with balanced data [9] or having a controllable module that tries to
control these biases [76, 91].

8.4 Further Support in Story Co-creation

Story attributes other than the protagonist’s fortune (e.g., conflict,
settings) can also steer the story flow. To decide which attribute
to support, the writer’s specific needs should be understood first.
Based on the identified attribute, visual controls can be designed
to assure expressive and simple control for the attribute. For exam-
ple, if writers want textual keywords to be used as control [152],
placing keywords along the story sequence axis can be one design
option. Alternatively, if a writer wants to convey condensed in-
formation about character interaction, diagramming a character
network graph can be a control option [4]. For example, one could
imagine drawing multiple instances of a network diagram to guide
the AI by which characters in a story should interact and how.
Alternative sketched representations are worth studying both for
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text generation [103] and beyond. To support these, the dataset
and algorithmic pipeline would need to be expanded based on the
attribute to be controlled.

For specific story domains, such as screenwriting, generation
can be extended to adopt the “show, not tell” approach. For such
extensions, the dataset would need to be constructed with screen
scripts while the algorithms would also need to consider the latent
fortune states throughout the story.

TaleBrush can potentially be extended to support the author-
ing of high-fidelity, longer text. To provide such support, the tool
would need to consider writers in the translation stage [44, 48],
where ideas and plans are transformed into detailed text. Hence,
generative tools should be able to follow the writer’s specifications.
The annotation approach would also need to be reconsidered, such
as annotating the fortune of the character after summarizing the
long text with crowdsourcing [141] or algorithms [8]. Moreover,
the control and sensemaking should be re-designed for longer text.
For example, a tool might allow the writer to first sketch an outline
and then a detailed story [40]. A more complete tool might enable
a long-term study of how co-creation impacts writing.

8.5 Limitation and Future Work

In this work, we qualitatively investigated how writers would use
TaleBrush and sketching interactions. Future work can investigate
how proposed interactions impact the story writing compared to
writers’ current practices or when controlled generation is used
without sketching interactions. Moreover, we did not look into
how each function impacts story writing separately. For example,
how would the control of surprise impact the writing experience
alone? To answer such questions, more controlled user experiments
would be needed. While our annotation approach produced usable
data, we identified ways it could be improved in the future. While
collecting comparison information with the slider interface, we saw
that how calibrating sentences were annotated would impact the
annotation results. For example, if one calibrating sentence has been
annotated with maximum fortune and the annotator later realizes
that one of the task sentences has higher fortune, the annotator
would either not annotate accurate comparison information or need
to re-annotate the calibrating sentence. One possible approach is
to modify the interface so that sliders can be extended without
having maximum or minimum ends. Finally, while the training
data specified which character’s fortune should be steered, the
trained model frequently coupled multiple characters’ fortunes. For
example, in the story about Bob and Alice, it is hard to make Bob
have a good fortune and Alice have a bad one. Explicit control of
multiple characters’ fortune can be one future work direction to
handle this limitation.

9 CONCLUSION

We introduce TaleBrush, a human-Al story co-creation tool that
allows writers to sketch out textual stories by visually controlling
the protagonist’s fortune. The visual sketch is used as an input to
the GPT-based story generation model and the model generates
stories according to the specified protagonist’s fortune. To help
make sense of the generated story, the protagonist’s fortune is
visualized using the same abstract representation as the drawn
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sketch. From our technical evaluation and user study, we found
TaleBrush has reliable controllability, while its sketching interaction
facilitates participants to iterate on generation to collect novel
ideas that align with their intentions. With the recent advances in
generative ML algorithms, we hope TaleBrush opens up new ways
to provide frictionless and intuitive controls.
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